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1.1 Introduction

In the very beginning, human life was simple. An early ancient herdsman compared
sheep (or cattle) of his herd with a pile of stones when the herd left for grazing and again on
its return for missing animals. In the earliest systems probably the vertical strokes or bars
such as I, II, 11, Il etc.. were used for the numbers 1, 2, 3, 4 etc. The symbol “llllI” was used by
many people including the ancient Egyptians for the number of fingers of one hand.

Around 5000 B.C, the Egyptians had a number system based on 10. The symbol
/" for 10 and “) for 100 were used by them. A symbol was repeated as many times as it was
needed. For example, the numbers 13 and 324 were symbolized as /Il and

AL respectively. The symbol %)) Al was interpreted as 100 + 100 +100+10+10+1+1+1

A

+1. Different people invented their own symbols for numbers. But these systems of notations
proved to be inadequate with advancement of societies and were discarded. Ultimately the
set{1, 2, 3, 4, ...} with base 10 was adopted as the counting set (also called the set of natural
numbers). The solution of the equation X + 2 = 2 was not possible in the set of natural
numbers, So the natural number system was extended to the set of whole numbers. No
number in the set of whole numbers W could satisfy the equationx+4=2orx+a=»b,if
a > b, and a, b, eW. The negative integers -1, -2, -3, ... were introduced to form the set of
integers Z =40, 1, £2,...).

Again the equation of the type 2x = 3 or bx = a where a,b,eZ
and b # 0 had no solution in the set Z, so the numbers of the form

where a,b,eZ and b # 0, were invented to remove such difficulties. The set

a
b
Q= {%I a,b,eZ A b#0}wasnamed as the set of rational numbers. Still the solution of equations

such as X2 =2 or x> = a (where a is not a perfect square) was not possible in the set Q. So the
irrational numbers of the type + /2 or + +/a where ais not a perfect square were introduced.
This process of enlargement of the number system ultimately led to the set of real numbers
R =QUQ’' (Q'is the set of irrational numbers) which is used most frequently in everyday life.

1.2 Rational Numbers and Irrational Numbers

We know that a rational number is a number which can be put in the form £ where p,
q

geZ A g #0. The numbers /16, 3.7, 4 etc., are rational numbers. /16 can be reduced to the

form £ where p, geZ, and g # 0 because /16 = 4 =
q

— |

Irrational numbers are those numbers which cannot be put into the form £ \where
q

p, geZ and g # 0. The numbers V2, \/5, % \/% are irrational numbers.

1.2.1 Decimal Representation of Rational and Irrational Numbers

1) Terminating decimals: A decimal which has only a finite number of digits in its decimal
part, is called a terminating decimal. Thus 202.04, 0.0000415, 100000.41237895 are examples
of terminating decimals.

Since a terminating decimal can be converted into a common fraction, so every
terminating decimal represents a rational number.

2) Recurring Decimals: This is another type of rational numbers. In general, a recurring or
periodic decimal is a decimal in which one or more digits repeat indefinitely.

It will be shown (in the chapter on sequences and series) that a recurring decimal can
be converted into a common fraction. So every recurring decimal represents a rational
number:

A non-terminating, non-recurring decimal is a decimal which neither terminates nor
it is recurring. It is not possible to convert such a decimal into a common fraction. Thus a
non-terminating, non-recurring decimal represents an irrational number.
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Example 1: Squaring both sides we get;
i) 25 (:2) is a rational number. 2= p_2 or p2 = 2¢? (1)
100 q’
i) -333"-(:§) is a recurring decimal, it is a rational number. The R.H.S. of this equation has a factor 2. Its L.H.S. must have the same factor.
Now a prime number can be a factor of a square only if it occurs at least twice in the
iy  23(=2.333..) is a rational number. square. Therefore, p? should be of the form 4p?
i so that equation (1) takes the form:
iv)  0.142857142857... (:7) is a rational number. Ap? = 2g? n(2)
i.e., 2p? = g? ee(3)
v)  0.01001000100001 ... is a non-terminating, non-periodic decimal, so itis an In the last equation, 2 is a factor of the L.H.S. Therefore, g2 should be of the form 42 so
irrational number. that equation 3 takes the form
vi)  214.121122111222 1111 2222 ... is also an irrational number. 2p2=4qg2% i.e., p?=2q> (4)
vii)  1.4142135 ... is anirrational number.
viii) 7.3205080 ... is an irrational number. From equations (1) and (2),
ix) 1.709975947 ... is an irrational number. p=2p
X)  3.141592654... is an important irrational number called it w(Pi) which and from equations (3) and (4)
denotes the constant ratio of the circumference of any circle to the length q=2¢q"
of its diameter i.e.,
r_2r
_circumference of any circle 7 2q
length of its diameter.
. .22 , .. 355 :
An approximate value of mis - @ better approximation is ITE} and a still better This contradicts the hypothesis that g is in its lowest form. Hence /2 is irrational.
approximation is 3.14159. The value of wt correct to 5 lac decimal places has been Example 3: Prove /3 is an irrational number.

determined with the help of computer.

Solution: Suppose, if possible +/3 is rational so that it can be written in the form p/q when

Example 2: Prove 2 is an irrational number. p,q € Zand g # 0. Suppose further that p/q is in its lowest form,

. | ble. 3 is rat | N then 3 =p/q, (q#0)
Solution: Suppose, if possible, 2 is rational so that it can be written in the Squaring this equation we get;
form p/q where p,g € Z and ¢=#0. Suppose further that p/q is in its lowest form.

2
3=L_ orp*=3¢> . (M
Then 2 =p/q, (g #0) q’
version: 1.1 version: 1.1
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The R.H.S. of this equation has a factor 3. Its L.H.S. must have the same factor.
Now a prime number can be a factor of a square only if it occurs at least twice in
the square. Therefore, p? should be of the form 9p? so that equation (1) takes the form:
9p* = 3¢* (2)
i.e., 3p?=¢g? (3)

In the last equation, 3 is a factor of the LH.S. Therefore, ¢
should be of the form 99?2 so that equation (3) takes the form
3p?=9qg? i.e., p?=3q9~ (4)
From equations (1) and (2),
P =3P
and from equations (3) and (4)
q=3q
r_3p
q 3¢

This contradicts the hypothesis that £ isin its lowest form.
. , q
Hence /3 is irrational.

1.3 Properties of Real Numbers

We are already familiar with the set of real numbers and most of their properties. We

now state them in a unified and systematic manner. Before stating them we give a prelimi-
nary definition.
Binary Operation: A binary operation may be defined as a function from A X A into A, but
for the present discussion, the following definition would serve the purpose. A binary oper-
ation in a set Ais a rule usually denoted by * that assigns to any pair of elements of A, taken
in a definite order, another element of A.

Two important binary operations are addition and multiplication in the set of real num-
bers. Similarly, union and intersection are binary operations on sets which are subsets of the

version: 1.1

)

same Universal set.

R usually denotes the set of real numbers. We assume that two binary operations
addition (+) and multiplication (. or x) are defined in R. Following are the properties or laws
for real numbers.

1. Addition Laws: -

i) Closure Law of Addition

V a,beR, a+beR (Vstands for “for all”)
ii) Associative Law of Addition

VY abceR a+b+c)=(a@+b)+c
iii) Additive Identity

V aeR, d0eR suchthat a+0=0+a=a
(34 stands for “there exists”).
O(read as zero) is called the identity element of addition.
iv) Additive Inverse
V aeR, d(-a)eR such that
a+(-a)=0=(-a)+a
V) Commutative Law for Addition
V a,beR a+tb=b+a
2.  Multiplication Laws

Vi) Closure l.aw of Multiplication

Y a,beR, a. beR (a,b is usually written as ab).
vii) Associative Law for Multiplication

Y a,b, ceR, a(bc) = (ab)c
viii) Multiplicative Identity

V aeR, d1eR suchthat a1=1a=a
1 is called the multiplicative identity of real numbers.
ix) Multiplicative Inverse

V a(0)eR, da'eR suchthat a.a'=a'.a=1 (a'is also written as l).
a

X) Commutative Law of multiplication
V a,beR, ab=ba
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Multiplication — Addition Law
V a,b,ce R,
a (b + ¢) = ab + ac (Distrihutivity of multiplication over addition).
(a+b)c=ac+ bc
In addition to the above properties R possesses the following properties.
i) Order Properties (described below).
i)  Completeness axiom which will be explained in higher classes.
The above properties characterizes R i.e., only R possesses all these properties.

Before stating the order axioms we state the properties of equality of numbers.

4.

2)

3)

4)

Properties of Equality
Equality of numbers denoted by “=" possesses the following properties:-

Reflexive property V acR, a=a

Symmetric Property V abeR, a=b=b=aq.
Transitive Property V abceR a=brb=c=a=c
Additive Property V abceR,a=b=a+c=b+c

Multiplicative Property V a,b,ceR,a=b = ac=bc A ca = cb.
Cancellation Property w.r.t. addition

V abceR,a+c=b+c=a=>b
Cancellation Property w.r.t. Multiplication:

V abceR,ac=bc=a=b,c#0
Properties of Ineualities (Order properties )
Trichotomy Property V a,beR
eithera=bora>bora<b
Transitive Property V a,b,ceR
) a>bAab>c =a>c i) a<bAb<c=a<c

Additive Property:. V a,b,ceR
a) i) a>b=a+c>b+c b i) a>b A c>d =a+c>b+d
i) a<b=a+c<b+c i) a<bnrnc<d=a+tc<b+d
Multiplicative Properties:
a) V ab,ceR andc>0
i) a>b=ac>bc i) a<b=ac<bc.
b) V ab,ceRandc<0.
i) a>b=ac<bc i) a<b=ac>bc

version: 1.1

) V ab,cdeR anda,b,cd are all positive.
i) a>bArc>d=ac>bd. i) a<b A c<d=ac<bd

Note That:

1. Any set possessing all the above 11 properties is called a field.
2. From the multiplicative properties of inequality we conclude that: - If both the sides
of an inequality are multiplied by a +ve number, its direction does not change, but
multiplication of the two sides by -ve number reverses the direction of the inequality.
3. a and (-a) are additive inverses of each other. Since by definition inverse of —a is g,
—-(-a)=a

4. The left hand member  of  the above equation should be

read as negative of ‘negative o and not ‘minus minus d.
1 T , ,

5.0 and — are the multiplicative inverses of each other. Since by
a

definition inverse of — is a (i.e.,, inverse of a' is a) 0az0

a

(") '=a or

Q ‘»—t|>—t

Example 4: Prove that for any real numbers a, b
i) a.0=0 i) ab=0=a=0vb=0[ v stands for “or”]

Solution: i) a.0=a[1+ (-1)] (Property of additive inverse)
=a(1-1) (Def. of subtraction)
=0.1-a.1 (Distributive Law)
=a-a (Property of multiplicative identity)
=a+(-0) (Def. of subtraction)
=0 (Property of additive inverse)
Thus a.0=0.
i) Giventhatab=0 (1)

Suppose a # 0, then  exists

version: 1.1
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: k :
(1) gives: Lam=21o0 (Multiplicative property of equality) Iv) %=k—za(k¢0) (Golden rule of fractions)
a a
= (l a)b = 1 .0 (Assoc. law of X) a i
a a V) é’— - (Rule for quotient of fractions).
—=1.b=0 (Property of multiplicative inverse). d
=h=0 (Property of mu|tip|icative |dent|ty) _
Thusifab=0anda#0,thenb=0
Similarly it may be shown that Solution:
ifab=0and b #0, thena=0. 4 ¢ a c
— _ _ i — —(d) —(bd
Henceab=0=a=0o0rb=0. ) b d b(1 ) d(l)
= L= (bd) === (bd)
Example 5: For real numbers a,b show the following by stating the properties used. b 1 d 1
) (-a)b=a(-b)=-ab ii) (—-a) (-b) = ab = a.(g.b).d = C-(E-bd)
=c(bd.l)
Solution: i)  (-a)(b)+ab=(-a+a)b (Distributive law) s ad  ch d
=0.b=0. (Property of additive inverse) “ ad=bc
(~a)b+ab=0 11 11
. e i d=bc=(ad)x—.—=bc—.—
i.e.. (—a)b and ab are additive inverse of each other. Again a b d b d
" (-a)b =—(ab)=—-ab (O —(ab) is written as —ab) N a.l.dl :b.l _ c.l
i) (-a) (-b) —ab = (-a)(-b) + (-ab) bod b
= (-a)(-b) + (-a)(b) (By () = b d
= (—a)(-=b + b) (Distributive law)
=(-a).0=0. (Property of additive inverse) ) , 111 bl o
(_a)(_b) =ab ||) (a );E— (a;)( Z) =1l.1=
Example 6: Prove that 11 o S
Thus ab and — are the multiplicative inverse of each other. But multiplicative inverse
a
i) _C sad=hc (Principle for equality of fractions 1
b d of ab is —
. 1 1 1 ab
g b @ L.1D
ab a b
iii) 4. c_ % (Rule for product of fractions). oac 11
b 'd bd i) 5 d —(a.b).(c.d
version: 1.1 version: 1.1
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2. Name the properties used in the following equations.
(Letters, where used, represent real numbers).

) 4+9-9+4 i (a+1)+%=a+(1+%>

i) V3+5)+V7=3+5+7) iv) 100+0=100

V) 1000 X 1 =1000 vi) 41+(-4.1)=0

vi) a-a=0 viii)

iX) alb-c)=ab-ac X) (X-y)z=xz-yz

Xi) 4X(5X8)=(4X5)X8 Xii) ab+c-d)=ab+ac-ad.

=(ac)(—=.—) (Using commutative and associative laws of multiplication)
1 c
=ac.—=—-.
bd b
_ac_|ac
b'd |bd
V) 3:3.1:3.5:%
b b b k ak
a_ak
b bk
a a 1
—  —(bd d(—.b
’ Q:b( ):a(b):ﬂ
c ¢ 1 bc
—  —(bd b(—.d
J d( ) ¢ (d )

Example 7: Does the set {1, -1 } possess closure property with respect to
i) addition i) multiplication?

Solution: i) 1+1=2,1+(-1)=0=-1+1
“1+(=1)=-2

But 2, 0, -2 do not belong to the given set. That is, all the sums do not belong to the
given set. So it does not possess closure property w.r.t. addition.
i) 1.1=1, 1.-M==-1, 1. 1==1, (-1).(-1)=1
Since all the products belong to the given set, it is closed w.r.t multiplication.

Exercise 1.1

1. Which of the following sets have closure property w.r.t. addition and multiplication?

i) {0y i)y {1}y i) (0,-1) iv) {1,-1}

5. Prove that -———-—=

version: 1.1

(2)

3. Name the properties used in the following inequalities:

) -3<-2=0<1

7 5 -21-10
12 18 36

4+16x

. Simplify by justifying each step: -

i)

-5<-4=20>16

i) 1>-1=>-3>-5 iv) a<0=-0>0
I 1 .

V) a>b =>—<— Vi) a>b = -a<-b
a

4. Prove the following rules of addition: -
: a b a+b . a c¢ ad+bc
) —+—= i) —+—=
c ¢ c b d bd

version: 1.1
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c I 1
b d a b
a
ii) a ¢ \) 1_ll
b d ab

1.4 Complex Numbers

The history of mathematics shows that man has been developing and enlarging his
concept of number according to the saying that “Necessity is the mother of invention”. In
the remote past they stared with the set of counting numbers and invented, by stages, the
negative numbers, rational numbers, irrational numbers. Since square of a positive as well
as negative number is a positive number, the square
root of a negative number does not exist in the realm of real numbers. Therefore, square
roots of negative numbers were given no attention for centuries together. However, recently,
properties of numbers involving square roots of negative numbers have also been discussed
in detail and such numbers have been found useful and have been applied in many branches
o f pure and applied mathematics. The numbers of the
form x + iy, wherex,yeR ,andi= ,are called complex numbers, here x is called real
part and y is called imaginary part of the complex

number. For example, 3 +4i, 2 - | etc. are complex numbers.

Let us start with considering the equation.

x*+1=0 (1)
= x2=-1
= X=+ -1

J-1 does not belong to the set of real numbers. We, therefore, for convenience call it
imaginary number and denote it by i (read as iota).
The product of a real number and i is also an imaginary number

elLearn.Punjab

Thus 2i, -3i, V/5i, —Ei are all imaginary numbers, i which may be
written 1.iis also an imaginary number.
Powers of i :
i= -1 (by defination)
P=i=-1i=—i
=2 X 2=(=1)(-1)=1
Thus any power of i must be equal to 1, i,—1 or —i. For instance,
iP= (202 = (=1)%i=1i

°=(?)°=(-1)P2=-1 etc.
1.4.1 Operations on Complex Numbers

With a view to develop algebra of complex numbers, we state a few definitions.
The symbols a,b,¢,d,k, where used, represent real numbers.
1) a+bi=c+di =>a=c b=d.
2) Addition: (a+ bi)+(c+di)=(a+c)+(b+d)i
3) k(a+ bi) = ka + kbi
4) (a+ bi)—(c+di)=(a+ bi) + [-(c + di)]
=a+ bi+ (-c—di)
=(a-0c)+(b-d)i
5) (a+ bi).(c +di)=ac+ adi+ bci+ bdi = (ac - bd) + (ad + bc)i.
6) Conjugate Complex Numbers: Complex numbers of the form (a + bi) and (a — bi) which
have the same real parts and whose imaginary parts differ in sign only, are called conjugates

of each other. Thus 5 + 4i and 5 — 4i, —2 + 3i and — 2 — 3i,— +/5i and /5 i are three pairs of
conjugate numbers.

1.4.2 Complex Numbers as Ordered Pairs of Real Numbers

We can define complex numbers also by using ordered pairs. Let C be the set of ordered
pairs belonging to R X R which are subject to the following properties: -

version: 1.1
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) (a,b)=(c,d) © a=crb=d.

i) (a,b)+(c,d)=(@+c b+d)

iii) If kis any real number, then k(a, b) = (ka, kb)

iv) (a, b) (c, d) = (ac - bd, ad + bc)

Then C is called the set of complex numbers. It is easy to sec that (a, b) — (¢, d)
=(a-c¢ b-d)

Properties (1), (2) and (4) respectively define equality, sum and product of two complex
numbers. Property (3) defines the product of a real number and a complex number.

Example 1: Find the sum, difference and product of the complex numbers (8, 9) and (5, —-6)

Solution: Sum=(8+5,9-6)=(13, 3)

Difference =(8-5, 9-(-6))=(3,15)
Product = (8.5 - (9)(-6), 9.5 + (-6) 8)
= (40 + 54, 45 - 48)
= (94, -3)

1.4.3 Properties of the Fundamental Operations on Complex
Numbers

It can be easily verified that the set C satisfies all the field axioms i.e., it possesses the
properties 1(i to v), 2(vi to x) and 3(xi) of Art. 1.3.
By way of explanation of some points we observe as follows:-
i) The additive identity in Cis (0, 0).
i) Every complex number (a, b) has the additive inverse
(~a, -b)i.e., (a, b) + (—-a, —b) = (0, 0).
iii)  The multiplicative identity is (1, 0) i.e.,
(a, b).(1,0) =(a.1 = b.0, b.1 +a.0) = (a, b).
=(1, 0) (a, b)
iv)  Every non-zero complex number {i.e., number not equal to (0, 0)} has a
multiplicative inverse.

e . -b
The multiplicative inverse of (a, b) is a ,
P ( ) (az+b2 a2+b2j

elLearn.Punjab
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(a,b)( b 2) = (1, 0), the identity element

a’+b* a*+b
a -b
z(az +b>a’ +b2)(a’b)

v) (a, b)[(c, d)x (e, f)]=(a, b)(c, d)*(a, b)(e, f)

1.4.4 A Special Subset of C

We consider a subset of C whose elements are of the form (g, 0) i.e., second component
of each element is zero.
Let (a, 0), (¢, 0) be two elements of this subset. Then
i) (a,0)+(c,0)=(a +c 0) i)  k(a, 0) = (ka, 0)
i) (a, 0) X (¢, 0) =(ac,0)

iv)  Multiplicative inverse of (a, 0) is G oj, a0,

Notice that the results are the same as we should have obtained if we had operated on
the real numbers a and c ignoring the second component of each ordered pair i.e., 0 which
has played no part in the above calculations.

On account of this special feature wc identify the complex number (a, 0) with the real
number a i.e., we postulate:
(0,0=a (1)
Now consider (0, 1)
(0,1).(0,1) =(=1,0)
= -1 (by (1) above).
If we set (0, 1)=i (2)

then (0, 1)>=(0,1)(0,1) = i.i = 2 = -1

We are now in a position to write every complex number given as an ordered pair, in
terms of i. For example

(a, b) =(a, 0) + (0O, b) (def. of addition)

version: 1.1
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=a(1, 0)+ b(0, 1) (by (1) and (2) above) 16. Separate into real and imaginary parts (write as a simple complex number): -

=0.1+ bi . N .
—a+ib ) 2= iy (2 iy
Thus (a, b) = a + ib where i? = — 4+ (1+0) I+i
This result enables us to convert any Complex number given in one notation into the
other. 1.5 The Real Line
Exercise 1.2 - P - S S S A >
X 0 A A
1. Verify the addition properties of complex numbers. o nig-(1)
2. Verify the multiplication properties of the complex numbers. In Fig.(1), let X’ X be a line. We represent the number 0 by a point O (called the origin)
3. Verify the distributive law of complex numbers. of the line. Let | OA| represents a unit length. According to this unit, positive numbers are
(@, b(c, d) + (e, f1 = (a, b)(c, d) + (a, b)(e, f) represented on this line by points to the right of O and negative numbers by points to the
(Hint: Simplify each side separately) left of O. It is easy to visualize that all +ve and —ve rational numbers are represented on this
4.  Simplify the following: line. What about the irrational numbers?
The fact is that all the irrational numbers are also represented by points of the line.
i) 9 IR i) (i) iv) (_2) Therefore, we postulate: -
5. \Write in terms of i 2 Postulate: A (1 — 1) correspondence can be established between the points of a line ¢ and
the real numbers in such a way that:-
T iy V55 i) —-16 iv) 1 i)  The number 0 corresponds to a point O of the line.
25 —4 i)  The number 1 corresponds to a point A of the line.
Simplify the following; i) If x,, x,are the numbers corresponding to two points P, P, then the distance
6. (7,9)+(3,-5 7. (8-5)-(74) 8. (26)3,7) between P, and P, will be |x, —x,|.
9. (5,-4)(-3,-2) 10. (0,3)(0,5) 1. 2,6)=3,7). It is evident that the above correspondence will be such that corresponding to any real
number there will be one and only one point on the line and vice versa.
12. (5 —4) <(-3, -8) (Hint for 11: (2,6) _ 2460 y 3_7; etc.] When a (1 - 1) c?rrespondence between the points ofa I.ine x'x and the refal numbers
(3,7) 3+7i 3-7i has been established in the manner described above, the line is called the real line and the
, real number, say x, corresponding to any point P of the line is called the coordinate of the
13. Prove that the sum as well as the product of any two conjugate ooint.
complex numbers is a real number.
14. Find the multiplicative inverse of each of the following numbers: 1.5.1 The Real Plane or The Coordinate Plane
) (4,7 i) (V2. -+5) iy (1,0)
15. Factorize the following: We know that the cartesian product of two non-empty sets A and B, denoted by A X B,
i) a*+4b? i) 9a° + 16b? iii) 3x2 +3y2 isthe set: A X B={(x,y) | xeA A yeB}

version: 1.1
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The members of a cartesian product are ordered Y
pairs. 6
The cartesian product RXR where R is the set of real
numbers is called the cartesian plane.

By taking two perpendicular lines x'ox and y'oy as :

£ 5 4 -3 -2

C4.3) 1, B@3G.2)

1 2 3 4 56 &

coordinate axes on a geometrical plane and choosing
a convenient unit of distance, elements of RXR can l
be represented on the plane in such a way that there is 53,2 b
a (1-1) correspondence between the elements of R xR ' 5
and points of the plane. ?

Fig. (2) .

The geometrical plane on which coordinate system has been specified is called the
real plane or the coordinate plane.

Ordinarily we do not distinguish between the Cartesian plane R xR and the coordinate
plane whose points correspond to or represent the elements of R XxR.

If a point A of the coordinate plane corresponds to the ordered pair (a, b) then a, b are
called the coordinates of A. a is called the x - coordinate or abscissa and b is called
the y - coordinate or ordinate.

In the figure shown above, the coordinates of the pointsB, C, D and E are (3, 2), (-4, 3),
(-3, -4) and (5, —4) respectively.

Corresponding to every ordered pair (g, b) €eR xR there is one and only one point in
the plane and corresponding to every point in the plane there is one and only one ordered
pair (a, b) in RxR.

There is thus a (1 — 1) correspondence between R xR and the plane.

1.6 Geometrical Representation of Complex Numbers The
Complex Plane

We have seen that there is a (1-1) correspondence between the elements (ordered
pairs) of the Cartesian plane RxR and the complex numbers. Therefore, there is a (1- 1)
correspondence between the points of the coordinate plane and the complex numbers.
We can, therefore, represent complex numbers by points of the coordinate plane. In this
representation every complex number will be represented by one and only one point of

elLearn.Punjab

the coordinate plane and every point of the plane will represent one and only one complex

number. The components of the complex number will be the coordinates of the point

representing it. In this representation the x-axis is called the real axis and the y-axis is called

the imaginary axis. The coordinate plane itself is called the complex plane or z — plane.
By way of illustration a number of complex numbers have been shown in figure 3.

The figure representing one or more complex
numbers on the complex plane is called an

version: 1.1

Argand diagram. Points on the x-axis represent y' <—i X
real numbers whereas the points on the y-axis '
represent imaginary numbers.
[—23
Fig (3)
\4
: : : v
In fig (4), x, y are the coordinates of a point. y
It represents the complex number x + iy. A
The real number /x* + y* is called the modulus L
of the complex number a + ib. 3/
In the figure M4 Lo x ¥ y
.OM :.x, MA=y | o : >
In the right-angled triangle OMA, we have, 0 M
by Pythagoras theorem,
12 12 12
‘OA‘ Z‘OM‘ +‘MA‘ Fig (4)
‘@‘ = x>+’
\d

r

V

Thus @\ represents the modulus of x +iy. In other words: The modulus of a complex
number is the distance from the origin of the point representing the number.

@)
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The modulus of acomplex numberis generally denoted as: | x+iy| or | (x,y)|.Forconvenience,

a complex number is denoted by z.
If z=x+iy=(x, y), then

2| =%+ »7

Example 1: Find moduli of the following complex numbers :

() 1-i3 (i) 3

Solution:

) Letz=1-i3
or z:1+i(—J§)

~ |7 =) + (3)

=/1+3=2
iii) Letz=-5i

or z=0+(-5)i

c |2 =407 +(=5) =5
Theorems: VZ 2,2, €,
i) |—Z|:|Z|:‘E‘=‘—z‘

i) zz=|qf

Proof :(i); Let z=a+ib,

(iii) —51

i)

(iv) 3+4i
Letz=3
orz=3+0.i

~ |2 =3 +(0)* =3

iv) Let z=3+4i

Vi

N

sz = J3) +(4)

Nl
I
N

Zl-l-Z2=Zl-|-Z2

|Zl'22| = |Zl|'|Zz|

1. Number Systems
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So, —z:—a—ib,;:a—ib and —z=-a+ib

w2 = ay + by = o + b
2| =a* +b?
2| =\@?+ ) =Va* +5?
-2 =(a)* + (b =Va* + 1

By equations (1), (2), (3) and (4) we conclude that
=2l =[el=[z |=|- 2|
z=a+ib
Sothat z=a—ib

(ii) Let

Taking conjugate again of both sides, we have

;:a+w:Z
(i) Let z=qg+ib sothatz=a—ib
s.zz=(a+ib)a—ib)
=a’ —iab +iab —i’b
=a’ - (-1)b’
=a’+b° =|Z|2

2

(iv) Let z =a+ibandz =c+id, then
z, + z,=(a +ib) + (c + id)
=(a+c)+ib+d)

(1)
(2)
(3)
(4)

SO, z+z,=(a+c)+i(b+d) (Taking conjugate on both sides)

=(a+0c)—ib+d)
= (a—ib) + (c—id) = z1 + 22
(V) Let z =a+ibandz, =c+id, wherez #0, then

z, a+ib

z, c+id

version: 1.1

=)

version: 1.1



1. Number Systems elLearn.Punjab

_a+ibxc—id
c+id c—id
(ac+bd)+i(bc—ad) ac+bd .bc—ad

= 2 7 ™ > 3 2

c +d c +d c +d

|z | _ac+bd l,bc—ad
' ct+d? ¢t +d?
ac+bd . bc—ad
= —. 1
¢’ +d? lc2+d2 (1)
Now 5_1:a+é:a—lb
z2 c+id c—id
_a—%xc+M
c—id c+id
_(ac+bd)—i(bc—ad)
¢t +d?
ac+bd . bc—ad
= - (2)

= 1
ct+d* At +d?

From (1) and (2), we have

(Note this step)

Z,

(vi) Let z =a + ib and z=c + id, then
|z,.2,|=|(a+ib)(c +id)|
=|(ac—ba’)+(ad+bc)i|
=\/(ac—ba’)2 +(ad + bc)’
= \/a202 +b°d* +a’d* +b’c’
= J(@ + D) +d?)

:|Zl|'|22|

This result may be stated thus: -
The modulus of the product of two complex numbers is equal to the product of their

moduli.

version: 1.1
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(vii) Algebraic proof of this part is tedius. Therefore, we prove it geometrically.

Fig (5)

In the figure point A represents z=0% ib and point C represents z=C* id. We complete
the parallelogram OABC. From the figure, it is evident that coordinates of B are (a + ¢, b + d),

therefore, B represents

Z 47 = (a+c)+(b+d)i and ‘@ =|z, +z,)|.

Also @\ =|2,

: [4B|=[0C|=lz,).

In the A OAB; OA + AB> OB (OA = mOA etc.)

|z1 |+ |zz| > |z1+zz|

Also in the same triangle, OA — AB < OB
sz =1zl <z +2 |

Combining (1) and (2), we have

— < <
2 1= lg, | <z 2] <z |+ ]2 |

(1)

(2)

(3)

=)
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i
A
which gives the required results with inequality “
=
signs. o
Results with equality signs will hold when the e

points A and C representing z and z |

become collinear with B. This will be so when
(see fig (6)).

C ,
d - 3 = X
0

a
b

v
Fig (6)

In such a case |Zl|+|22|=‘@‘+‘a

- OB‘ + ‘BC

:%‘
=|z, + 2,

Thus |Z1 +22|=|Zl|+|22|

The second part of result (vii) namely

|Zl+22|£|zl|+|zz|

is analogue of the triangular inequality*. In words, it may be stated thus: -
The modulus of the sum of two complex numbers is less than or equal to the sum of the
moduli of the numbers.

2y Zy

in the

Example 2: If z = 2+ 1, z = 3-2i, z = 1+ 3i then express
forma +ib
(Conjugate of a complex number z is denoted as z )

Zy

Solution:
zyz,  (24+1)(1+30) 2-i)(1-30)
z, 3-2i 3-2i

(2-3)+(-6-1)i —1-7i
3.2 3-2i
(~1=7D)(3+2i)

- (3-2i)(3+2i)
C(B+14)+(2-21) 11 23,
- 3% 422 RERRER

Example 3: Show that, V z,,z,€C, z z,=2z z,

Solution: Let z=a && z, ¢ di

z,z, =(a +bi)(c + di) = (ac — bd)(ad + bc)i
=(ac—bd)—(ad + bc)i (M

2.z, = (a+bi) = (c+ di)

=(a —bi)(c —di)
=(ac—bd)+ (—ad —bc)i
Ha biy{c di)

«a bi)Hc di)
=(ac—bd)+ (—ad —bc)i (2)

Z,.2,

Thus from (1) and (2) we have, z z,=z z,

Polar form of a Complex number: Consider adjoining diagram Y

representing the complex number z = x + iy. From the diagram, we 1 CE B
see thatx=rcosd and y =rsind wherer=|z| and 6 is called argument . :

of z. . g
Hence x+iy=rcos6 + rsind (i) o TR
where r=¥+,” @aad 6=tan > .

Equation (i) is called the polar form of the complex number z. = +

*In any triangle the sum of the lengths of any two sides is greater than the length of the third
side and difference of the lengths of any two sides is less than the length of the third side.

version: 1.1
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Example 4: Express the complex number 1+i+/3 in polar form.

Solution:

Step-l: Putrcosd=1andrsinf=+
Step-Il: ~ ~* =(1)’ +(\/3)?

=r’=1+3=4 =r=2
Step-lli: H:tan*?:tan_lx/g:@‘j
Thus 1+ i3 =2¢0s60° +i2sin 60°

De Moivre’'s Theorem : -
(cosO + isin®)" = cosnb + isinn®, Vn € Z
Proof of this theorem is beyond the scope of this book.

1.7 To find real and imaginary parts of

i) (x+ iy ii) (ﬂ] L X Hiv, 20
x2 -i-ly2
forn=4+1, £2, +3, ...
i) Let x =rcos6 and y=rsind, then

(X + iy)"= (rcose + irsino)”
= (rcos0 + irsing)”
= [r(cos6 + ising)]”
= r"(cosO + isinO)”
= r'(cosno + isinno) ( By De Moivre's Theorem)
= r" cosn® + ir"sinn®

Thus r" cosn6é and r" sinn6 are respectively the real and imaginary parts of (x + iy)".

Where r=¢1x2 2 and tan' X,
y

version: 1.1

i)  Letx, +iy,=r cosO, +r sinnd and x, + iy, =r, cosO, + r,sinnd, then,

n o . n . .
Lxl—”ylj _}E r,cosO, +risin6, J r"(cos@, +isin6,)"

. . . n . . n
X, +1iy, r,cos6, +r,isin0, 1" (cos@, +isind,)

1 . -
:rl—n(c{asé?1 isin@)"(cesd, isind,)™"

2

n

= r‘n (cosnB, +isin nd,)(cos (—nb), +isin(—nb,)),

r

(By De Moivre's Theorem)

n

= rln (cos n6, +isin nb,)(cosnd, —isinnb,), (cos(—6) = cos@
1’2

sin( — @)= —sinf)

n
r . .
=+ [(cosnB, cosnb, sinnb, sinnb,)
7"2
+i(sinn6, cosnb, — cosnb, sinnb, )]

n

=i [cos (nB, —nb,) + isin(n6, — nb,)] " cos (a — )= cosacosf +sinasinf

n
7”2

and sin(a — f) = sinacosf —cosasinf

""[cosn(6, - 6,)+isin n(6,-6,)]

h

n

= d [COSI’I(HI 92)+ isinn (01 _92)]

n

n

Thus r‘n cosn (6, —6,) and f

2

n
X, +1i )
S A 'yl , X, +iy, #0
X, + 1y,

n
}"2

,1& 71y72

where r, = x>+’ ,6,=tan * andr, = \x,> 3f; O,=tan

sinn(6,—0,) are respectively the real and imaginary parts of
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Example 5: Find out real and imaginary parts of each of the following
complex numbers.

) (J§+i)3 i) Ll‘ﬁij

1+\/§i

Solution:
i) Let rcos@ =3 and rsin @ =1 where

r =(\/§)2 + 17 orr =+/3+1 =2and9=tan*IL =30°

J3
3
So, (\E + i) = (rcos@ + irsin@)’
=7 (cos36 + isin36)
=2’ (c0s90° + isin90°)
—8(0+il)
= 8i

(By De Moivre's Theorem)

Thus 0 and 8 are respectively real and imaginary Parts of (\/5 + i)3.
and r,sing, = —/3

=7 Z\/(1)2+(—\/§)2 =+1+3=2 and §, =tan™ —? —60°

i)  Letr,cos6, =1

Also Let r,cos6, =1 and rsiné, =+/3

=7 = \/(1)2 +(3) = 1+3=2and 6, tan*? = 60°

(1_\/51')5 [2(cos(—600)+isin(—600)) 5

So, | ——=| =

143 2(005(60") + isin(600))
(cos(~60") +isin(~60"))
(cos(60°) +isin(60°))

=5

(cos(—60°) + isin(~60)) (cos(60°) + isin(60”))
= (cos(—300°) +isin( - 300°))(cos( —300°) + isin( —300°))

version: 1.1

= (cos(300°) isin(300°))(cos(300°) isin(300°)) —-rcos( 6)=cosd
and sin(—6#)= —sind

3

Thus _71 — are respectively real and imaginary parts of (

1-3i)
1+\/§i

Exercise 1.3

1. Graph the following numbers on the complex plane: -
) 2430 i) 2-3i i) -2-3i iv)  —2+3i

v) -6 vi) i vii) %—%i vii) —5—6i

2. Find the multiplicative inverse of each of the following numbers: -

) -3i i) 1-2i i)  -3-5i iv) (1, 2)
3. Simplify
i) i i) (—ai)’, aeR iii) i° iv) i7"

4. Provethat z=z iff zis real.
5. Simplify by expressing in the form a + bi

)y 5+2J4 i) Q2+V-3)3+V-3)
i 2 V)
J5 +/-8 J6 /12

6. Showthat Vze C

. -2 . .. 7 -
i) z°—z isareal number. ii) (z—2z)* is areal number.

@)

version: 1.1



1. Number Systems eLearn.Punjab

7. Simplify the following

) —l+£z i) [—l—ﬁz)
2 2 2 2

i) —%—gi [—%—?i] V) (a+biy

V)  (a+bi)”? vi)  (a+biy

Vi) (a—biy’ vii)  (3-v—4)"

version: 1.1
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2.1 Introduction

We are familiar with the notion of a set since the word is frequently used in everyday
speech, for instance, water set, tea set, sofa set. It is a wonder that mathematicians have
developed this ordinary word into a mathematical concept as much as it has become a
language which is employed in most branches of modern mathematics.

For the purposes of mathematics, a set is generally described as a well-defined
collection of distinct objects. By a well-defined collection is meant a collection, which is such
that, given any object, we may be able to decide whether the object belongs to the collection
or not. By distinct objects we mean objects no two of which are identical (same).

The objects in a set are called its members or elements. Capital letters A B, C, X, Y,
Z etc., are generally used as names of sets and small letters a, b, ¢, x, y, z etc., are used as
members of sets.

There are three different ways of describing a set

i) The Descriptive Method: A set may be described in words. For instance, the set of all
vowels of the English alphabets.

ii) The Tabular Method: A set may be described by listing its elements within brackets. If
A is the set mentioned above, then we may write:

A ={a,eio,u}.

iii) Set-builder method: It is sometimes more convenient or useful to employ the method
of set-builder notation in specifying sets. This is done by using a symbol or letter for an
arbitrary member of the set and stating the property common to all the members.

Thus the above set may be written as:
A = {x |xis a vowel of the English alphabet}
This is read as A is the set of all x such that x is a vowel of the English alphabet.
The symbol used for membership of a setis €. Thus a € Ameans ais an element of A or

a belongs to A. c ¢ A means c does not belong to A or cis not a member of A. Elements of

a set can be anything: people, countries, rivers, objects of our thought. In algebra we usually

deal with sets of numbers. Such sets, alongwith their names are given below:-

N = The set of all natural numbers ={1,2,3,...}

W = The set of all whole numbers ={0,1,2,...}

Z = Thesetof all integers ={0,£1,+2....}.

Z'= The set of all negative integers ={-1,-2,-3,...}.

version: 1.1
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O = The set of all odd integers ={+1,+3,15,...}

E = The set of all even integers ={0,+2,%4,...}

Q = The set of all rational numbers = {x x=2 wherep,qez andq;tO}
q

Q’=The set of all irrational numbers = {x x# L where p,qeZ andq;tO}
q

/R = The set of all real numbers=Q U Q’

Equal Sets: Two sets A and B are equal i.e., A=B, if and only if they have the same elements
that is, if and only if every element of each set is an element of the other set.

Thus the sets {1, 2, 3} and { 2, 1, 3} are equal. From the definition of equality of sets
it follows that a mere change in the order of the elements of a set does not alter the set. In
other words, while describing a set in the tabular form its elements may be written in any
order.

EquivalentSets:IftheelementsoftwosetsAandBcanbepairedinsuchawaythateachelement
of Ais paired with one and only one element of Band vice versa, then such a pairingis called a
one-to-onecorrespondencebetweenAandBe.g.,ifA={Billal, Ahsan,Jehanzeb}and B={Fatima,
Ummara, Samina}thensixdifferent(1-1)correspondencescanbeestablishedbetweenAandB

Two of these correspondences are shown below; -

i). {Billal,  Ahsan, Jehanzeb}

P !

{Fatima, Ummara, Samina}

version: 1.1
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ii). {Billal,  Ahsan, Jehanzeb)

P !

{Fatima, Samina, Ummara)
(Write down the remaining 4 correspondences yourselves)
Two sets are said to be equivalent if a (1 — 1) correspondence can be established
between them In the above example A and B are equivalent sets.

Example 1: Consider thesets N={1,2,3,...}and 0 ={1, 3,5,...}
We may establish (1-1) correspondence between them in the following manner:
{1, 2, 3, 4,5, ..}

P11

{1, 3,5 7,9, .}
Thus the sets N and O are equivalent. But notice that they are not equal.
Remember that two equal sets are necessarily equivalent, but the converse may not be
true i.e., two equivalent sets are not necessarily equal.
Sometimes, the symbol ~ is used to mean is equivalent to. Thus N~O.

Order of a Set: There is no restriction on the number of members of a set. A set may have 0,
1, 2, 3 or any number of elements. Sets with zero or one element deserve special attention.
According to the everyday use of the word set or collection it must have at least two elements.
But in mathematics it is found convenient and useful to consider sets which have only one
element or no element at all.

A set having only one element s called a singleton set and a set with no element (zero
number of elements) is called the empty set or null set.The empty set is denoted by the
symbol ¢ or { }.The set of odd integers between 2 and 4 is a singleton i.e., the set {3} and the
set of even integers between the same numbers is the empty set.

The solution set of the equation x? +1 = 0, in the set of real numbers is also the empty
set. Clearly the set {0} is a singleton set having zero as its only element, and not the empty set.

Finite and Infinite sets: If a set is equivalent to the set {1, 2, 3,...n} for some fixed natural
number n, then the set is said to be finite otherwise infinite.
Sets of number N, Z, Z’etc., mentioned earlier are infinite sets.

version: 1.1
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The set {1, 3, 5,....... 9999} is a finite set but the set { 1, 3, 5, ...}, which is the set of all
positive odd natural numbers is an infinite set.

Subset: If every element of a set A is an element of set B, then A is a subset of B. Symbolically
this is written as: A < B (A is subset of B)
In such a case we say B is a super set of A. Symbolically this is written as:
B o A{Bis a superset of A)

Proper Subset: If A is a subset of B and B contains at least one element which is not an
element of A, then A is said to be a proper subset of B. In such a case we write:A c B(Ais a
proper subset of B).

Improper Subset: If A is subset of B and A = B, then we say that A is an improper subset of
B. From this definition it also follows that every set A is an improper subset of itself.

Example 2: LetA={a,b,c}, B={c a b}and C={a, b, ¢, d}, then clearly
Ac C B< Cbut A=Band B=A.
Notice that each of A and B is an improper subset of the other because A= B

Theorem 1.1: The empty set is a subset of every set.

We can convince ourselves about the fact by rewording the definition of subset as
follows: -

Ais subset of B if it contains no element which is not an element of B.
Obviously an empty set does not contain such element, which is not contained by another
set.
Power Set: A set may contain elements, which are sets themselves. For example if: C = Set
of classes of a certain school, then elements of C are sets themselves because each class is
a set of students. An important set of sets is the power set of a given set.

O
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The power set of a set S denoted by P (S) is the set containing all the possible subsets

of S.

Example 3: If A={q, b}, then P()={®, {a}, {b}. {a.b}}

Recall that the empty set is a subset of every set and every set is its own subset.

Example 4: If B={1, 2, 3}, then
P®) = {0, {1}, {2}, (3}, (12}, {13}, {23}, {12.3}}

Example 5: If C={q, b, ¢, d}, then

Example 6: If D = {a}, then pPD)={®,{a}}

Example 7: If E= { }, then P(E)={®}

Universal Set: When we are studying any branch of mathematics the sets with which we
have to deal, are generally subsets of a bigger set. Such a set is called the Universal set or
the Universe of Discourse. At the elementary level when we are studying arithmetic, we
have to deal with whole numbers only. At that stage the set of whole numbers can be treated
as Universal Set. At a later stage, when we have to deal with negative numbers also and

fractions, the set of the rational numbers can be treated as the Universal Set.

For illustrating certain concepts of the Set Theory, we sometimes consider quite

)
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small sets (sets having small number of elements) to be universal. This is only an academic
artificiality.

Exercise 2.1

1. Write the following sets in set builder notation:

i)
iii)
V)
Vii)
Viii)
Xi)
X)
Xi)
Xii)

{1,2,3 ... ,1000} i) {0,1,2,...... , 100}
{0, £1,£2,.......... +1000} iv)  {0,-1,-2,......... ,—500}
{100, 101,102, ......... ,400} vi)  {-100,-101,-102,.., -500}

{Peshawar, Lahore, Karachi, Quetta}
{January, June, July }

The set of all odd natural numbers

The set of all rational numbers

The set of all real numbers between 1and 2,
The set of all integers between — 100 and 1000

2.  Write each of the following sets in the descriptive and tabular forms:-

) {x|]xe N A x<10} i) {xlxe NAd<x<12}
i) {x|xe Z A-5<x<5} iv)  {x|xe EA2<x <4}
v) {x|lxe PA x<12} vi) {x|xe OA3<x<12}
vii) {x|x e Er4< x <10} viii) {x|x e E A4<x <6}
iX) {x|xe OA5=<x <7} X) {x|xe OA5<x<7}
xi) {x|xe N A x+4=0} xi) {x|xe Qr x?=2}

xiii) {x|xe KA x=x Xiv)  {x|xe QA x=-x}

XV)

xvi) {xlxe K Ax ¢ Q}

{x|]xe R Axzx}

3. Which of the following sets are finite and which of these are infinite?

i)
i)
iii)
iv)
V)
Vi)
Vii)

The set of students of your class.

The set of all schools in Pakistan.

The set of natural numbers between 3 and 10.
The set of rational numbers between 3 and 10.
The set of real numbers between 0 and 1.

The set of rationales between 0 and 1.

The set of whole numbers between 0 and 1

viii) The set of all leaves of trees in Pakistan.

Q
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ixX)  P(N) X) P{a,b,c}

xi) {1,2,3.4,..} xii)  {1,2,3,....,700000000}
xiii) {xx|xe K A x #x} xiv) {x|xe K A x? =—16}
xv) {x|xe QA x*=5} xvi) {x|xe QA 0<x<1}

4.  Write two proper subsets of each of the following sets: -
i) {a b, ¢ i) {0, 1} i) N iv) Z
V) Q vi) K vii) W viii) {x|xe Q A 0 <x <2}

5. Is there any set which has no proper sub set? If so name that set.
6. What is the difference between {a, b} and {{a, b}}?

7. Which of the following sentences are true and which of them are false?
) {1.2y={21} i) o S{a}} i) {a} < {{a}}
v) {a}e {{a}} vi) a<={{a}} vii) @ <{{a}}

8. What is the number of elements of the power set of each of the following sets?
) {} i) {01} i) {1,2,3,4,5,6,7}
v) {0,1.23,4,56,7r Vi) {a, {b, c}} vii) {{a.b}{b,c}{d.e}}

9. Write down the power set of each of the following sets: -

10.  Which pairs of sets are equivalent? Which of them are also equal?
i) {a, b ct {1,2 3}
i) The set of the first 10 whole members, {0, 1, 2, 3.....,9}
iii) Set of angles of a quadrilateral ABCD,
set of the sides of the same quadrilateral.
iv) Set of the sides of a hexagon ABCDEF,
set of the angles of the same hexagon;

V) 1234,..3{2468..} vi){1.234..} {1,,

N | —
W | —
ENG
—

viii) {5, 10, 15,.....,55555}, {5, 10, 15, 20........ }

2.2 Operations on Sets

Just as operations of addition, subtraction etc., are performed on numbers, the
operations of unions, intersection etc., are performed on sets. We are already familiar with
them. A review of the main rules is given below: -

Union of two sets: The Union of two sets A and B, denoted by AUB, is the set of all elements,
which belong to A or B. Symbolically;

AUB {x|xeAvxeB}
ThusifA={1, 2,3}, B={2, 3, 4,5}, then AUB ={1,2,3,4,5}

Intersection of two sets: The intersection of two sets A and B, denoted by AN B, is the set
of all elements, which belong to both A and B. Symbolically;

ANB= {x|xeA/\xeB}
Thus for the above sets Aand B, AnB ={2,3}

Disjoint Sets: If the intersection of two sets is the empty set then the sets are said to be
disjoint sets. For example; if

S, =The set of odd natural numbers and S,= The set of even natural numbers, then §,
and S, are disjoint sets.

The set of arts students and the set of science students of a
college are disjoint sets.
Overlapping sets: If the intersection of two sets is non-empty but neither is a subset of the
other, the sets are called overlapping sets, e.g., if

L ={2,3,4,5,6} and M= {5,6,7,8,9,10}, then L and M are two overlapping sets.

version: 1.1
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Complement of a set: The complement of a set A, denoted by A’or A¢relative to the universal
set U is the set of all elements of U, which do not belong to A.

Symbolically: A”= {x|xeU rx ¢ 4}
For example, if U=N, then E'=0 and O=E

Example 1: If U = set of alphabets of English language,
C = set of consonants,
W = set of vowels, then C=Wand W= C.
Difference of two Sets: The Difference set of two sets A and B denoted by A-B consists of
all the elements which belong to A but do not belong to B.
The Difference set of two sets B and A denoted by B-A consists of all the elements, which
belong to B but do not belong to A.

Symbolically, A-B = {x|xeAAx§EB} and B-A = {x|xeB/\x¢A}

Example 2: IfA={1,2,3,4,5}, B ={4,5,6,7,8,9,10}, then
A-B={1,2,3} and B-A={6,7,8,9,10}.

2.3 Venn Diagrams

Venn diagrams are very useful in depicting visually the basic concepts of sets and
relationships between sets. They were first used by an English logician and mathematician
John Venn (1834 to 1883 A.D).

In a Venn diagram, a rectangular region represents the universal set and regions
bounded by simple closed curves represent other sets, which are subsets of the universal
set. For the sake of beauty these regions are generally shown as circular regions.

U
In the adjoining figures, the shaded circular region represents a set A

and the remaining portion of rectangle representing the universal set

version: 1.1
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Below are given some more diagrams illustrating basic operations on two sets in
different cases (lined region represents the result of the relevant operation in each case
given below).

AUB

ANB

A-B

The above diagram suggests the following results: -

version: 1.1
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Note (1) Since the empty set contains no elements, therefore, no portion of U represents

Fig Relation between Result Suggested it.
No. AandB (2) If in the diagrams given on preceding page we replace B by the empty set (by
1. Aand B disjoint sets AUB consists of all the elements of A and all the imagining the region representing B to vanish).
ANB=0 elements of B. Also AUD = A (FromFig. 1 or 4)
n(AUB) = n(A) + n(B) AN @ = o (From Fig. 5 or 8)
A- @ = A (From Fig. 9 or 12)
2. A and B are overlapping AUB contains elements which are P-A= 0 (FromFig. 13 or 16)
ANB# @ i)in A and not in B i) in B and not in A iii) in both A Also by replacing B by A (by imagining the regions represented by A and B to coincide),
and B. Also we obtain the following results:
n (AUB)=n (A) + n(B) — (ANB) AUA =A (From fig. 3 or 4)
ANA =A (From fig. 7 or 8)
3. ASB AUB = B; n(AUB)=n(B) A-A =0 (From fig. 12)
4. BCA AUB = A n(AUB)=n(A)
Again by replacing B by U, we obtain the results: -
5. ANB=9® ANB=0: n(AN B)=0 AUU =U (Fromfig.3); AnU=A (From fig.7)
6. ANB#® AN B contains the elements which are in A and B A-U =@ (Fromfig.11); U-A=A" (From fig. 15)
(3) Venn diagrams are useful only in case of abstract sets whose elements are not
7. ASB ANB=A; n(ANB)=n(A) specified. It is not desirable to use them for concrete sets (Although this is
erroneously done even in some foreign books).
8. BCA ANB=B; n(ANB)=n(B)
9. Aand B are disjoint sets. A-B=A n(A — B)=n(A) Exercise 2.2
10. Aand B are overlapping nA—B)=n(A) —nANB 1. Exhibit AU Band A NB by Venn diagrams in the following cases: -
11. AC B A_B=®: n(A — B)=0 f) ACB N 'ii) BS A i) AUA’ |
12. BCA A_Bz®: n(A — B)=n(A) — n(B) iv) A and B are disjoint sets. v)  Aand B are overlapping sets
13. A and B are disjoint B_A=B: n(B — A)=n(B) 2. ShowA - Band B - A by Venn diagrams when: -
14. Aand B are overlapping n(B-A)= n(B)—n (ANB) i) Aand B areoverlappingsets i) ASB i) BSA
15. AS B B - A%+ ®; n(B- A)=n(B) — n(A) " _
16. BCA B— A= ®: n(B - A)=0 3. Under what conditions on A and B are the following statements true?

) AUB=A i) AUB=B i) A-B=A
iv) ANB=B v) n(AUB)=nA)+n(B) vVvi) n(ANB)=n(A)

version: 1.1 version: 1.1
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vi) A-B=A vii) n(ANB)=0 ix) AUB=U
X) AUB=BUA xi) n(ANB)=n(B). i) U-A=0

4. letU={1,234,5,6,7,89,10}, A={24,6810}, B={1,2345}andC={1,3,5,79}
List the members of each of the following sets: -
i) AC i) B¢ iii) AUB iv) A-B
v) ANC vi) AU C¢ vii) A“UC. viii)  U¢

5. Using the Venn diagrams, if necessary, find the single sets equal to the following: -
i) A i) ANU i)y AU U iv) AU® v) oMo

6. Use Venn diagrams to verify the following: -
i) A-B=AN B i) A-BXNB=B

2.4 Operations on Three Sets

If A, Band C are three given sets, operations of union and intersection can be performed
on them in the following ways: -

) AU (BU () i) (AUB)UC i) A N(BUC)
v) (ANB)NC v) AU(BNQ vi) ANQU (BN O
vii) (AUB)N C viii) AN B)U C. iX) AUQON((BUAIQ

LetA={1,2, 3}, B={234,5}and C={3,4,5,6,7,8}
We find sets (i) to (iii) for the three sets (Find the remaining sets yourselves).

) BUC = {234,5,6,7,8}, AU(BUC) ={1,2345,6,7,8}
i) AUB = {1,2,3,4,5} AUB)U C={1,23,45,6,7,8}
i) BN C = {3,4,5}, AN(BNC) ={3}

2.5 Properties of Union and Intersection

We now state the fundamental properties of union and intersection of two or three
sets. Formal proofs of the last four are also being given.

version: 1.1
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Properties:

) AUB = BUA (Commutative property of Union)

i) ANB= BNA (Commutative property of Intersection)
i) AU (BUC)=(AUB)UC (Associative property of Union)

iv) ANBNC)=ANB)NC (Associative property of Intersection).

v) AU(BNO=AUBN(AUC) (Distributivity of Union over intersection)
vi) AN(BUC)=(ANB)U(ANO (Distributivity of intersection over Union)

Vi) (AuB)=ANH

vii) (AmB)':A'uB'] De Morgan's Laws

Proofs of De Morgan'’s laws and distributive laws:
i) AUB=ANPB
Let xe(4UB)
= x¢gAUB
= xgdand x¢B
= xed and xeB
= xe€AdAnNnB
But x is an arbitrary member of (AUBY)’ (1)
Therefore, (1) means that (AUB)' S A'NB' (2)
Now suppose thaty e ANB’
= yed and yeB
= ygd and y¢B
= y¢AUB
= ye(4uB)
Thus A’NB* S(AUBY
From (2) and (3) we conclude that (3)
(AU B) =A'NB’
ii) (ANB) =AUB
It may be proved similarly or deducted from (i) by complementation
iii) AUBNC = (AUBNAUQO)
Llet xe AU (B NCQC)
= x€AorxeBNC
= If x€Ait must belong to AUB and x€AUC

()
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= x€(AUB)N(AUC)
Alsoif xeB N C,thenxeBand xeC(. (1)
= x€ AUBand xeAUC
= x<€(AUB)NAUQ)
Thus AU(BNC) S(AUB)NAUQ) (2)
Conversely, suppose that
ye(AuB)Nn (4w ()
There are two cases to consider: -
ved, yg A
In the first casey e A U(BNQ)
If y¢ A4, it must belong to B as well as C
i.e.,ye(BNO
SyeAdAu(BnCO)
So in either case
ye (AUB) N (AUCQ) = y<AU(BNCQ)
thus (4UB)N(AUC)c AU(BNC) (3)
From (2) and (3) it follows that
AUBNC)=(AUB)NAUQ)
iv) ANBUO =ANBU (ANC)
It may be proved similarly or deducted from (iii) by complementation

Verification of the properties:

Example 1: Let A={1,2,3}, B={2,3,4,5} and (={3,4,5,6,7,8}
i) AuB={1,23}u{2,345 BUA={2,3,4,5}uU{1,2,3}
={1,2,3,4,5} ={2,3,4,51}

i) ANB={1,23}n{2,3,4,5} BNA=1{2,3,4,5} N {1,2,3}
={2,3} ={2,3}

(iii) and (iv) Verify yourselves.
(v) AuB N0 ={1,2,3}uU ({2,3,4,5}n{3,4,5,6,7,8)

2. Sets Functions and Groups
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={1,23} U {3,4,5}
={1,2,3,4,5} (1)
AUB)NAUQO=({123}yu{2,3,4,5}Nn({1,2,3}u{3,4,56,7,8})
={1,2,3,4,5} N {1,2,3,4,5,6,7,8}
={1,2,3,4,5} (2)

vi)  Verify yourselves.

vii) Letthe universal setbe U={1,2,3,4,5,6,7,8,9,10}
AUB={1,23}U{2345}={1,23,4,5}
(A UB) ={6,7,8,9,10} (1)
A=U-A=(4,5,6,7,8,9,10)
B =U-B={1,6,7,8,9,10}
A'nB=(45678910}n {1,6,7,89,10}
={6,7,8,9,10} (2)

From (1) and (2),
viii) Verify yourselves.

From (1) and (2),

Verification of the properties with the help of Venn diagrams.

i) and (ii): Verification is very simple, therefore, do it = A lll
yourselves, llligl A BUC
iii): In fig. (1) set A is represented by vertically lined _ﬂé \ =V #
region and B U Cis represented by horizontally lined Sa==te AUB U ()
region. The set AU(B U () is represented by the region S—— I, =V
which is lined either in one or both ways.

Fig (1)
In figure(2) A UB is represented by horizontally lined B - AUB
region and C by vertically lined region. (AU B) U Cis A c |l
represented by the region which is lined in either one _j_j:m AUB)UC
or both ways. ; E%_JC | =l v #

Fig (2)
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From fig (1) and (2) we can see that

AU (BUC)=AUBUC

(iv) Infig (3) doubly lined region represents.
AN(BNCQC)

In fig (4) doubly lined region represents
(AnB)n C.

Since in fig (3) and (4) these regions are the same
therefore,

An(BnC)=(AnB)n C.

(v)infig. (5)A U (B N C)is represented by the
region which is lined horizontally or vertically
or both ways.

In fig. (6) (AU B) (N (AU C)is represented by
the doubly lined region. Since the two region in
fig (5) and (6) are the same, therefore

AUBNC)=(AUB)Nn (AU QO

(vi) Verify yourselves.

(vii) Infig(7) (AU B)"is represented
by vertically lined region.

=N AS
=2\ BNC|
:,\3 M | 'C/___J An(BNC
Fig (3)
74N
_:;i T ANB=
|| of
2 A (ANB)NC
#
Fig (4)
BAC||
AU(BNQ)
= ||l v #
Fig (5)
Al «ﬂﬁ
P izt R AVUB=
= e
= =i ‘ﬂ;}' (AUB)N(AUQ)
-\""\-ﬁ-'. Li..]_. "“L-, m
Fig (6)
UL |
—
i 7 : _
MHT_L AVB=

Fig (7)

T L

(A B)|

(viii) Verify yourselves.

In fig. (8) doubly lined region represents. iFrissnsaaiansanissaniianaa

AnB. " ]?}Tri P A =

The two regions in fig (7). And (8) are the Eeree| U}Ez B

same, therefore, (AUB)Y=A'nB' g:il r f.é = - ANnEB
||| S w
R —

Exercise 2.3

Verify the commutative properties of union and intersection for the following pairs of
sets: -

) A=(1,234,5} B={4,68,10} i)y N,Z

i) A={xlxe KA x>0} B="K.

. Verify the properties for the sets A, B and C given below: -

i)  Associativity of Union ii) Associativity of intersection.
iii) Distributivity of Union over intersection.

iv) Distributivity of intersection over union.

a) A={1,234}, B={3456,78} C={5,6,7910}

b) A=, B= {0}, C={0,1,2}

A NZQ

. Verify De Morgan’s Laws for the following sets:

U={1.23,..,20},A={246,...,20}and B={1,3,5, ....,19}.

Let U = The set of the English alphabet
A={x|xisavowel}, B={y|yis aconsonant},
Verify De Morgan's Laws for these sets.

. With the help of Venn diagrams, verify the two distributive properties in the following

version: 1.1
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cases w.r.t union and intersection.
i) A< B,ANC= ® and B and C are overlapping.
ii)  Aand B are overlapping, B and C are overlapping but A and C are disjoint.

6. Taking any set, say A = {1,2,3,4,5} verify the following: -
i) AUD=A i) AUA=A iii) ANA=A

7. If U={1,2,3,4,5,...., 20} and A= {1,3,5, ...., 19), verify the following:-
i) AUA =U i) ANU=A i) ANA'=®

8. From suitable properties of union and intersection deduce the following results:
i) AN(AUB)=AU(ANB) i) AU(ANB)=AN(AUB).

9. Using venn diagrams, verify the following results.
i) ANB’'=A iff ANB=® i) (A-B)UB=AUB.
i) A-B)NB=® iv) AUB=AU(A'NB).

2.6 Inductive and Deductive Logic

In daily life we often draw general conclusions from a limited number of observations
or experiences. A person gets penicillin injection once or twice and experiences reaction
soon afterwards. He generalises that he is allergic to penicillin. We generally form opinions
about others on the basis of a few contacts only. This way of drawing conclusions is called
induction.

Inductive reasoning is useful in natural sciences where we have to depend upon
repeated experiments or observations. In fact greater part of our knowledge is based on
induction.

On many occasions we have to adopt the opposite course. We have to draw conclusions
from accepted or well-known facts. We often consult lawyers or doctors on the basis of their
good reputation. This way of reasoning i.e., drawing conclusions from premises believed to
be true, is called deduction. One usual example of deduction is: All men are mortal. We are
men. Therefore, we are also mortal.

version: 1.1

Deduction is much used in higher mathematics. In teaching elementary mathematics
we generally resort to the inductive method. For instance the following sequences can be
continued, inductively, to as many terms as we like:

iy 2,46,.. iy 1,40, i) 1,-1,2,-2,3,-3,...
iv) 1,4.7,.. vy 1L 1 viy 2.4
3°12736 10°100°1000

As already remarked, in higher mathematics we use the deductive method. To start
with we accept a few statements (called postulates) as true without proof and draw as many
conclusions from them as possible.

Basic principles of deductive logic were laid down by Greek philosopher, Aristotle.
The illustrious mathematician Euclid used the deductive method while writing his 13 books
of geometry, called Elements. Toward the end of the 17th century the eminent German
mathematician, Leibniz, symbolized deduction. Due to this device deductive method became
far more useful and easier to apply.

2.6.1 Aristotelian and non-Aristotelian logics

For reasoning we have to use propositions. A daclarative statement which may be true
or false but not both is called a proposition. According to Aristotle there could be only two
possibilities - a proposition could be either true or false and there could not be any third
possibility. This is correct so far as mathematics and other exact sciences are concerned. For
instance, the statement a = b can be either true or false. Similarly, any physical or chemical
theory can be either true or false. However, in statistical or social sciences it is sometimes
not possible to divide all statements into two mutually exclusive classes. Some statements
may be, for instance, undecided.

Deductive logic in which every statement is regarded as true or false and there is no
other possibility, is called Aristotlian Logic. Logic in which there is scope for a third or fourth
possibility is called non-Aristotelian. we shall be concerned at this stage with Aristotelian
logic only.

2.6.2 Symbolic logic

For the sake of brevity propositions will be denoted by the letters p, g etc. We give a

version: 1.1
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brief list of the other symbols which will be used.

Symbol How to be read Symbolic expression How to be read
-~ not ~p Not p, negation of p
A and p A\g p and q
v or pvQ porqg
- If p then g
— If... then, implies p—q 5 Trislies 6
Is equivalent to, if and p if and only if g
- only if P4 p is equivalent to g

Explanation of the use of the Symbols:

1) Negation: If p is any proposition its negation is denoted by ~p, read T | F
‘not p'. It follows from this definition that if p is true, ~p is false and if
p is false, ~p is true. The adjoining table, called truth table, gives the =] U
possible truth- values of p and ~p. Table (1)

2) Conjunction of two statements p and q is denoted symbolically as | p q [pNq
p/\qg (p and g). A conjunction is considered to be true only if both
its components are true. So the truth table of p N q is table (2). T)1T T

Example 1: T | F F
i) Lahore is the capital of the Punjab and Fl T r

Quetta is the capital of Balochistan.
i) 4<5A8<10 L
i) 4<5A8>10 Table (2)
iv) 2+2=3A6+6=10

Clearly conjunctions (i) and (ii) are true whereas (iii) and (iv) are false.

3) Disjunction of p and g is p or qg. It is symbolically written p v q . Py g9 pvA
The disjunction p v q is considered to be true when at least one TITI| T
of the components p and q is true. It is false when both of them
are false. Table (3) is the truth table. T |F T

F | T T
F | F F
Table (3)
version: 1.1
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Example 2:
i) 10 is a positive integer or 7 is a rational number. Find truth value of this disjunction.

Solution: Since the first component is true, the disjunction is true.
ii) Atriangle can have two right angles or Lahore is the capital of Sind.

Solution: Both the components being false, the composite proposition is false.

2.7 Implication or conditional

A compound statement of the form if p then g, also written p implies q , is called a
conditional or an implication, p is called the antecedent or hypothesis and q is called the
consequent or the conclusion.

A conditional is regarded as false only when the antecedent is true and consequent is
false. In all other cases it is considered to be true. Its truth table is, therefore, of the adjoining

form.
L , o , p 9 |p—q
Entries in the first two rows are quite in consonance with
common sense but the entries of the last two rows seem to be T| T T
against common sense. According to the third row the conditional T!| F F
If p then g
, , : . F T T
is true when p is false and g is true and the compound proposition
is true (according to the fourth row of the table) even when both its F | F T
components are false. We attempt to clear the position with the help Table (4)

of an example. Consider the conditional

If a person A lives at Lahore, then he lives in Pakistan.

If the antecedent is false i.e., A does not live in Lahore, all the same he may be living in
Pakistan. We have no reason to say that he does not live in Pakistan.
We cannot, therefore, say that the conditional is false. So we must regard it as true. It must be
remembered that we are discussing a problem of Aristotlian logic in which every proposition
must be either true or false and there is no third possibility. In the case under discussion there
being no reason to regard the proposition as false, it has to be regarded as true. Similarly,
when both the antecedent and consequent of the conditional under consideration are false,
there is no justification for quarrelling with the proposition. Consider another example.

version: 1.1
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A certain player, Z, claims thatif he is appointed captain, the team will win the tournament. 2.7.1 Biconditional: p <« ¢
There are four possibilities: -
i) Zis appointed captain and the team wins the tournament. Z's claim is true.
ii)  Zis appointed captain but the team loses the tournament. Z's claim is falsified.
iii)  Zis not appointed captain but the team all the same wins the tournament.There is no

The proposition p—qg Aq—p i s shortly written p <> g and is called the biconditional
or equivalence. It is read p iff g (iff stands for “if and only if ')
We draw up its truth table.

reason to falsify Z's claim. p q p—gq g—p perg
iv)  Zisnotappointed captain and the team loses the tournament. Evidently, blame cannot

be put on Z T T T T T

It is worth noticing that emphasis is on the conjunction if occurring in the beginning T F F T F
of the ancedent of the conditional. If condition stated in the antecedent is not satisfied we F T T F F
should regard the proposition as true without caring whether the consequent is true or r r T T T
false. Table (6)

For another view of the matter we revert to the example about a Lahorite:

‘If a person A lives at Lahore, then he lives in Pakistan’.

p: A person A lives at Lahore.

qg. Helivesin Pakistan

When we say that this proposition is true we mean that in this case it is not possible
that ‘A lives at Lahore’ is true and that ‘A does not live in Pakistan’ is also true, thatis p —>¢

and ~ ( pA~ q) are both simultaneously true. Now the truth table of ~ ( pA~ q) is shown Let p— q be a given conditional. Then
below: i) g—piscalled the converse of p—g;

ii) ~p—~qis called the inverse of p—g;

From the table it appears that p <> g is true only when both p and g are true or both p
and g are false.

2.7.2 Conditionals related with a given conditional.

= = = = T iii) ~q —~ pis called the contrapositive of p—g.
To compare the truth values of these new conditionals with those of p—qg we draw

T F 4 4 3 up their joint table.

3 . 3 g = Given Converse Inverse |Contrapositive

F F T F T conditional :

Table (5) pla|~p|-a p—q g—p ~p—-~q ~q—~p
Looking at the last column of this table we find that truth values of the compound T|ITI|F | F T T T T
proposition ~ ( p/A~ q) are the same as those adopted by us for the conditional p—g. This TIEFIFI| T F T T F
shows that the two propositions p—qg and ~ (p A~ q) are logically equivalent. Therefore, the FlTI|T = T F F T
truth values adopted by us for the conditional are correct. rlelT!| E T T T T
Table (7)
version: 1.1 version: 1.1

(=)




2. Sets Functions and Groups elLearn.Punjab 2. Sets Functions and Groups elLearn.Punjab

From the table it appears that called a tautology, for example, p— q <> (~q— ~p) is a tautology.(are already verified by
i) Any conditional and its contrapositive are equivalent therefore any theorem may be a truth table).
proved by proving its contrapositive. i) A statement which is always false is called an absurdity or a contradiction

i)  The converse and inverse are equivalent to each other. eg.p—~p

iii)  Astatementwhich can be true or false depending upon the truth values of the variables

Example 3: Prove that in any universe the empty set @ is a subset of any set A. involved in it is called a contingency e.g., ()— ) A(p v g) is a contingency.

. . , . (You can verify it by constructing its truth table).
First Proof: Let U be the universal set consider the conditional:

VxeU,xep—>xeA (1)

2.7.4 Quantifiers
The antecedent of this conditional is false because no xeU, is a member of @ . The words or symbols which convey the idea of quantity or number are called
Hence the conditional is true. quantifiers.
In mathematics two types of quantifiers are generally used.
Second proof: (By contrapositive) i)  Universal quantifier meaning for all
The contrapositive of conditional (1) is Symbol used : v
VxeU,x¢gA—>x¢¢ (2) i)  Existential quantifier: There exist (some or few, at least one) symbol used: 3
The consequent of this conditional is true. Therefore, the conditional is true.
Hence the result. Example 5:
i) Vxe A, p(x)is true.
Example 4: Construct the truth table ot [([p—q)Ap—q] (To be read : For all x belonging to A the statement p(x) is true).

i) dxe A p(x)is true.

Solution : Desired truth table is given below: - (To be read : There exists x belonging to A such that statement p(x) is true).

P P p=q |~/ p  |lp=9Ap—q]
T [ = - - - Thesymboldstandsforsuchthat
I £ £ £ 1 Exercise 2.4
F T T F T
F F T F T 1. Write the converse, inverse and contrapositive of the following conditionals: -
Table (8) ) ~p—q i) g—p i) ~p—=~q iv) ~q—~p
2.7.3 Tautologies
2. Construct truth tables for the following statements: -
i) A statement which is true for all the possible values of the variables involved in it is ) (p=~p Mp—q) i) (pA~-p)—q

version: 1.1 version: 1.1
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i)y ~(p—q) > (p/~q)

3. Show that each of the following statements is a tautology: -
) (prg)—p i) p—(vQq
i) ~(p—q) —p iv) ~gA (p—=g)—~p

4. Determine whether each of the following is a tautology, a contingency or an absurdity: -

) pA-p i) p—@—p i) qv(~qvp)
5. Provethatpv(~pA~q)v(pAQ)=pVv(~pA~q)

2.8 Truth Sets, A link between Set Theory and Logic.

Logical propositions p, g etc., are formulae expressed in terms of some variables. For
the sake of simplicity and convenience we may assume that they are all expressed in terms
of a single variable x where x is a real variable. Thus p = p(x) where, xe/X.. All those values of
x which make the formula p(x) true form a set, say P. Then P is the truth set of p. Similarly,
the truth set, Q, of g may be defined. We can extend this notion and apply it in other cases.
i) Truth set of ~p: Truth set of ~p will evidently consist of those values of the variable for
which p is false i.e., they will be members of P, the complement of P.

i) pv@q:Truthsetof pvg=p(x)vq(x) consists of those values of the variable for which p(x)
is true or g(x) is true or both p(x) and q(x) are true.
Therefore, truth set of p v g will be:
PUQ  ={x|p(x)istrue or g(x)is true}

iii) p/Ag:Truth set of p(x) A g(x) will consist of those values of the variable for which both
p(x) and g(x) are true. Evidently truth set of

pAg= PNQ

={ x| p(x) is true Aq(x) is true}

iv)  p—¢q: We know that p—q is equivalent to ~p v q therefore truth set of p—qg will be
PUQ

V) p <> q: We know that p <> g means that p and g are simultaneously true or false.
Therefore, in this case truth sets of p and g will be the same i.e.,
P=Q
version: 1.1
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Example 1: Give logical proofs of the following theorems: -
(A, Band C are any sets)
i) (AUBY =A'NB i) AN(BUQO)=ANB)UANCQ
Solution: i) The corresponding formula of logic is
~(pvg=~pA~q (1)

We construct truth table of the two sides.

p | p |~p|~q | pva |~(ova |~p A~q
T T F F T F F
T|F |F|T| T F F
F T T F T F F
F| F |T|T| F T T

The last two columns of the table establish the equality of the two sides of eq.(1)
(i)  Logical form of the theorem is
pA@vnN=(pAqVv(pAr)
We construct the table for the two sides of this equation
1 2 3 4 ® 6 7

T T T T T T T T
T T F T T T F T
T F T T T F T T
T F F F F F F F
F T T T F F F F
F T F T F F F F
F F T T F F F F
F F F F F F F F

Comparison of the entries of columns@ and (8) is sufficient to establish the desired result.

version: 1.1
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Solution: C = Set of children ={c,, ¢,, ¢.;} and F = set of fathers ={m,, m,}
C X F ={(c,m),(c,m,),(c, m,),(c, m),(c,m,),(cm)}
r = set of ordered pairs (child, father).
={(c,, m).(c,, m,,)(c; m,)}

Exercise 2.5

Convert the following theorems to logical form and prove them by constructing truth

tables: -

1. (ANBy=AUB 2. (AUB)UC=AU(BUCQ) bomr=(c, ¢ G Ranr={m,m}

3. (ANBNC=AN(BNO 4. AUBNO =(AUB)NAUQ The relation is shown diagrammatically in fig. (2.29).
2.9 Relations

In every-day use relation means an abstract type of connection between two persons
or objects , for instance, (Teacher, Pupil), (Mother, Son), (Husband, Wife), (Brother, Sister),
(Friend, Friend), (House, Owner). In mathematics also some operations determine relationship

between two numbers, for example: -

>:(5,4); square: (25, 5), Square root: (2,4); Equal: (2 X 2,4).
Fig (2.29)

Technically a relation is a set of ordered pairs whose elements are ordered pairs of
related numbers or objects. The relationship between the components of an ordered pair Example 2: Let A = {1, 2, 3}. Determine the relation r such that xry iff x <y.
may or may not be mentioned.
Solution: Ax A ={(1, 1),(1, 2).,(1, 3),(2, 1), (2, 2),(2, 3),(3, 1).(3, 2).(3, 3)}
i) Let A and B be two non-empty sets, then any subset of the Cartesian product

A XB is called a binary relation, or simply a relation, from A to B. Ordinarily a Clearly, required relation is:
relation will be denoted by the letter r. r={(1,2),(1,3),(2,3)}, Domr={1,2}, Ranr={2, 3}
ii)  The set of the first elements of the ordered pairs forming a relation is called its
domain. Example 3: Let A = 7, the set of all real numbers.
iii)  The set of the second elements of the ordered pairs forming a relation is called Determine the relation r such thatxryiffy =x+1
its range.
iv) IfAisanon-empty set, any subset of A X Ais called a relation in A. Some authors Solution: AxA="RX K
call it a relation on A. r={(xy)y=x+1}
Whenx=0, y=1
Example 1: Let ¢, ¢, ¢, be three children and m,, m,be two men such that father of both x=-1,y=0,
¢, ¢, is m, and father of ¢, is m,. Find the relation {(child, father)} ris represented by the line passing through the points (0,1), (- 1,0).
version: 1.1 version: 1.1
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.'I-
i) Domr="Tk
iii) Clearly first elements of no two ordered pairs of r can be equal. Therefore, in this case
(0. 1),/ | ris a function. A B
Some more points belonging to r are: /[ Y53 i)  Into Function: If a function f: A — Biis such that Ran LY y
{(1,2),(2,3), 3, 4), (—2,;__1 ), (-3 ,-2 ),(—4;3)} fc Bie., Ranf#B, thenf is said to be a function from A :
Clearly, Dom r= /&, and Ranr= /K into B. In fig.(1) fis clearly a function. But Ran f# B. I == g =4
1,0/ Therefore, fis a function from A into B. S - i
; 1 - / _ e/
() =g Fig (1) ity
. f={(1,2), (3,4), (5,6)}
. Fig (2.30)
2.10 Functions * 4 B
A very important special type of relation is a function defined as below: - i)  Onto (Surjective) function: If a function f: A —Bis | . b
Let A and B be two non-empty sets such that: such that Ran f= Bi.e., every element of Bis the image | ©* | ey
i)  fisarelation fromAto Bthatis, fis a subset of A X B of some elements of A, then f is called an onto function ._‘ﬂ_rf i | '
i) Domf =A or a surjective function. - Fig (2)
iiiy  First element of no two pairs of f are equal, then f is said to be a function from A f=A(c, m).(c,, m)(c, m,)}
to B. 4 <
The function fis also written as: " |
f:A—B iii) (1-1) and into (Injective) function: If a function ffrom I® " :
which is read: fis a function fromAto B. A into B is such that second elements of no two of its | 2e—— > —
If (x, y) in an element of fwhen regarded as a set of ordered pairs, ordered pairs are equal, then it is called an injective | | ec
we write y = f(x). y is called the value of f for x or image of x under f. (1 -1, and into) function. The function shown in fig (3)is "~ Fig(3)
In example 1 discussed above such a function. =L, a)2 b)}
i) risasubsetofC X F A B
iy Domr={c,c,c}=C iv) (1-1) and Onto function (bijective function). If fis a :
iii)  First elements of no two related pairs of r are the same. function from A onto B such that second elements of no B ) =
Therefore, ris a function from Cto F. two of its or-dered pairs are the same, then f is said to be L | v
In Example 2 discussed above (1 - 1) function from A onto B. i —
) risasubset of A X A: Such a function is also called a (1 — 1) correspondence )
i) Domr=A between A and B. It is also called a bijective function. Fig (4)
Therefore, the relation in this case is not a function. Fig(4) shows a (1-1) correspondence between the sets f=Ala, 2).(b, x).(c, yj}
In example 3 discussed above Aand B.
i) risasubset of /&
version: 1.1 version: 1.1
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(a, 2), (b, x) and (¢, y) are the pairs of corresponding elements i.e., in this case

f={(a, 2), (b, x), (¢, )} which is a bijective function or (1 - 1) correspondence between the

sets A and B.
Set - Builder Notation for a function: We  know that set-builder notation
is more suitable for infinite sets. So is the case in respect of a function
comprising infinite number of ordered pairs. Consider for instance, the function

f={(1,1),(24),(3,9), (4, 16),...}

Domf=(1,2,34,..}.and Ranf={1,409, 16, ..}

This function may be written as: f={(x, y) | y =x% x € N}

For the sake of brevity this function may be written as:

f=function defined by the equation y=x*,x € N

Or, to be still more brief: The function x*,x € ~

In algebra and Calculus the domain of most functions is /& and if evident from the
context it is, generally, omitted.

2.10.1 Linear and Quadratic Functions

The function {(x,y)|y=mx+c} is called a linear function, because its graph (geometric
representation) is a straight line. Detailed study of a straight line will be undertaken in the
next class. For the present it is sufficient to know that an equationof the form

y=mx +corax+ by+c=0 represents a straight line . This can be easily verified
by drawing graphs of a few linear equations with numerical coefficients. The function
{(x, Y)|ly = ax* + bx + c} is called a quadratic function because it is defined by a quadratic
(second degree) equation in x, y.

Example 4: Give rough sketch of the functions

) ()| 3x+y=2) i) () y=§x2}

Solution:
i) The equation defining the functionis 3x +y =2
=>y=-3x+2
We know that this equation, being linear, represents a straight line. Therefore, for
drawing its sketch or graph only two of its points are sufficient.

version: 1.1
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When x=0,y=2, 7

When y=0,x= % = 0.6 nearly. So two points on the line

{1
(0, 2)

are A (0, 2) and B =(0.6, 0). KT
Joining A and B and producing AB in both directions, we obtain o \&
the line AB i.e., graph of the given function. Fig (1)

!
L

ii)  The equation defining the function is y= % X2

Corresponding to the values 0, + 1, 2, +3 ... of x, values . _51 /..
ofyare0, .5, 2, 4.5, ... /

We plot the points (0, 0), (1, .5), (£2, 2), (£3, 4.5), ... T\ /
Joining them by means of a smooth curve and extending ) o ¥
it upwards we get the required graph. We notice that: Fig@ |

i) The entire graph lies above the x-axis.

i)  Two equal and opposite values of x correspond to every value of y (but not vice
versa).

iii) As x increases (numerically) y increases and there is no end to their ncrease.
Thus the graph goes infinitely upwards. Such a curve is called a parabola. The
students will learn more about it in the next class.

2.11 Inverse of a function

If a relation or a function is given in the tabular form i.e., as a set of ordered pairs, its
inverse is obtained by interchanging the components of each ordered pair. The inverse of r
and f are denoted r ' and f-' respectively.

If ror fare given in set-builder notation the inverse of each is obtained by interchanging
x and y in the defining equation. The inverse of a function may or may not be a function.

The inverse of the linear function

{x,y)|ly=mx+c is {(x ) |x=my+c}whichis also a linear function. Briefly, we
may say that the inverse of a line is a line.

()

version: 1.1
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The line y = x is clearly self-inverse. The function defined by this equation i.e., the
function {(x, y) | y = x} is called the identity function.

Example 6: Find the inverse of
i) {(1, 1}, (2,4), (3,9), (4, 16),... x €L},
i) {(xy)|y=2x+3x €K} i) {(x, y)| %+ y*=a2}.
Tell which of these are functions.

Solution:

i) The inverse is:
{(2,1), (4, 2),(9,3),(16,4)...}.
This is also a function.

The function defined by the equation
y= x x =0
is called the square root function.
The equation y2=x =y = ++/x
Therefore, the equation y? = x (x =0) may be regarded as defining the union of the
functions defined by
y=+x x>0andy=-Vx x>0.
i)  The given function is a linear function. Its inverse is:
{(x, y)| x=2y+3}
which is also a linear function.
Points (0, 3), (-1.5, 0) lie on the given line and points (3, 0),
(0, =1.5) lie on its inverse. (Draw the graphs yourselves).
The lines /, i" are symmetric with respect to the line y = x. This quality of symmetry is
true not only about a linear n function and its inverse but is also true about any function of
a higher degree and its inverse (why?).

version: 1.1
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Exercise 2.6

1. For A = {1, 2, 3, 4}, find the following relations in A. State the
domain and range of each relation. Also draw the graph of each.
) Ay |y=x i) {y)|y+x=5}
i)  {xy)|x+y<5} iv)  {(x,y)|x+y>5}

2. Repeat Q-1whenA="k, the set of real numbers. Which of the real lines are functions.
3.  Which of the following diagrams represent functions and of which type?

=3

4. Find the inverse of each of the following relations. Tell whether each relation and its
inverse is a function or not: -

) {21),3,2), (4,3), (54), (6,5)} i) {(1,3), (2,5), (3,7), (4,9), (5,11)}
i) {(xy) |y=2x+3x € K} iv)  {(x,y) | y=40x x>0}
V) {xy) | 2+y2=9, x| <3|y <3}

2.12 Binary Operations

In lower classes we have been studying different number systems investigating the
properties of the operations performed on each system. Now we adopt the opposite course.
We now study certain operations which may be useful in various particular cases.

An operation which when performed on a single number yields another number of the
same or a different system is called a unary operation.

Examples of Unary operations are negation of a given number, extraction of square
roots or cube roots of a number, squaring a number or raising it to a higher power.

@)
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We now consider binary operation, of much greater importance, operation which
requires two numbers. We start by giving a formal definition of such an operation.

A binary operation denoted as X (read as star) on a non-empty set G is a function which
associates with each ordered pair (g, b), of elements of G, a unique element, denoted as a X
b of G.

In other words, a binary operation on a set G is a function from the set G X G to the set
G. For convenience we often omit the word binary before operation.

Also in place of saying x is an operation on G, we shall say G is closed with respect to x.
Example 1: Ordinary addition, multiplication are operations on N. i.e., N is closed with
respect to ordinary addition and multiplication because

va,be N,a+be NANabe N
(V stands for” for all” and A stands for” and”)

Example 2: Ordinary addition and multiplication are operations on E, the set of all even
natural numbers. It is worth noting that addition is not an operation on O, the set of old
natural numbers.

Example 3: With obvious modification of the meanings of the symbols, let £ be any

even natural number and O be any odd natural number, then ol E|] O
E @ E = E (Sum of two even numbers is an even number). FlEl O
E®O0=0

and O®O0-=E 0] 0| £

These results can be beautifully shown in the form of a table given above:
This shows that the set {E, O} is closed under (ordinary) addition.
The table may be read (horizontally).
E® E=E E®O0=0;
ODO0=E ODE=0

Example 4: The set (1 -1, i, —i } where i = /-1 is closed
w.r.t multiplication (but not w. r. t addition). This
can be verified from the adjoining table.

2. Sets Functions and Groups elLearn.Punjab

version: 1.1

: . . ® 1 ® o’
Example 5: It can be easily verified that ordinary
multiplication (but not addition) is an operation on the 1 1 @ W
set {1,0,0°} where ®* =1. The adjoining table may be used 602 (DZ 2 L
for the verification of this fact. ® o : &

(0 is pronounced omega)
Operations on Residue Classes Modulo n.

Three consecutive natural numbers may be written in the form:

3n, 3n +1, 3n + 2 When divided by 3 they give remainders 0, 1, 2 respectively.

Any other number, when divided by 3, will leave one of the above numbers as the
reminder. On account of their special importance (in theory of numbers) the remainders
like the above are called residue classes Modulo 3. Similarly, we can define Residue
classes Modulo 5 etc. An interesting fact about residue classes is that ordinary addition and
multiplication are operations on such a class.

Example 6: Give the table for addition of elements of the set of residue classes modulo 5.

Solution: Clearly {0,1,2,3,4} is the set of residues that
we have to consider. We add pairs of elements as in
ordinary addition except that when the sum equals
or exceeds 5, we divide it out by 5 and insert the
remainder only in the table. Thus 4+ 3 =7 but in
place of 7 we insert 2(= 7—5) in the table and in place
of 2+3 =5, we insert O(= 5—5).

Example 7: Give the table for addition of elements of the set of residue classes modulo 4.

®@ |01 ]2]3

Solution: Clearly {0,1,2,3}is the set of residues that we have to 010l > 1 3

consider. We add pairs of elements as in ordinary addition except T 11121310

that when the sum equals or exceeds 4, we divide it out by 4 and S 12131011

insert the remainder only in the table. Thus 3+ 2 =5 but in place 313101l 112
version: 1.1
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of 5we insert 1(=5—4)in the table and in place of 1 + 3 =4, we insert 0(=4—4).

Example 8: Give the table for multiplication of elemnts of the set of residue classes modulo
4,

Solution: Clearly {0,1,2,3} is the set of residues that we have to
consider. We multiply pairs of elements as in ordinary
multiplcation except that when the product equals or exceeds 4,
we divide it out by 4 and insert the remainder only in the table.
Thus 3X2=6 but in place of 6 we insert 2 (= 6—4 )in the table and
in place of 2X2=4, we insert 0(= 4—4).

Example 9: Give the table for multiplication of elements of the set of residue classes modulo
8.

Solution: Table is given below:

|01 ]2|3(4]|5|6]|7
0o(ofo0f{0O|]0Oj0O|J0]|]0]O0
110|112 |3[4|5]|6]7
210|246 [0]2|4]6
3|10(3 (61 ]14]|7]2]|5
410404040 4
5/0(512|7|4|1|6]|3
6|06 (4|2 |[0]|6|4]2
/10|76 ]|5[4]3|2]1

2.12.1 Properties of Binary Operations

Let S be a non-empty set and X a binary operation on it. Then X may possess one or
more of the following properties: -
i) Commutativity: X is said to be commutative if

ii) Associativity: X is said to be associative on S if
a X (b Xc)=(a X b) X cV ab,c<S.
iii) Existence of an identity element: An element e<S is called an identity element
w.r.t x if
a Xe=e Xag=0a, Vaes.
iv) Existence of inverse of each element: For any element a €5,3 an elementa' €S
such that
a Xa'=a’Xa=e (the identity element)

Note: (1) The Symbol 3 stands for ‘there exists'.

(2) Some authors include closure property in the properties of an operation. Since
thispropertySisalreadyincludedinthedefinitionof operationwe have considered
it unnecessary to mention it in the above list.

(3) Some authors define left identity and right identity and also left inverse and right
inverse of each element of a set and prove uniqueness of each of them. The
following theorem gives their point of view: -

Theorem:
i) In a set S having a binary operation X a left identity and a right identity are the same.
ii) In a set having an associative binary Operation left inverse of an element is equal to

its right inverse.
Proof:
ii) Let e’ be the left identity and e” be the right identity. Then

e'x e =¢ (- €"is a right identity)
=e" (- e’is a left identity)

Hence e'=e” =e

Therefore, e is the unique identity of S under x
i) ForanyaeS,leta’, a”beits left and right inverses respectively then

ax(@xa') =a Xe (- a"isright inverse of a)

=a (- eis the identity)
Also (a’Xa) X a"=¢e X a" (. a’is leftinverse of a)
=q"
Butd’ X (a X a")=(a’"*%a) X "X is associative as supposed)
a=a’

Inverse of a is generally written as a”.

version: 1.1
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Example 10: Let A =(1,2,3,...., 20}, the set of first 20 natural numbers. 3. Show that the adjoining table is that of
Ordinary addition is not a binary operation on A because the set is not closed w.r.t. addition. multiplication of the elements of the set of
For instance, 10 + 25=25¢ A residue classes modulo 5.

Example 11: Addition and multiplication are commutative and associative operations on
the sets

N,Z,Q, %, (usual notation),
e.g. 4X5=5X4, 2+(3-+5)=(2+3)+5 etc. 4. Prepare atable of addition of the elements of the set of residue classes modulo 4.
5. Which of the following binary operations shown in tables (a) and (b) is commutative?
Example 12: Verify by a few examples that subtraction is not a binary operation on N but it
is an operation on Z, the set of integers.

Exercise 2.7

1. Complete the table, indicating by a tick mark those properties which are satisfied by the
specified set of numbers.

(a) (b)

6. Supply the missing elements of the third row of the x |a | b ] c]d
o given table so that the operation % may be associative. | @ | a | b | ¢ | d
® b b a C d
C = = = =
D
d d d
2 C C
® 7. What operation is represented by the adjoining table? X 0 1 2 3
® Name the identity element of the relevant set, if it exists.| 0 0 1 2 3
D Is the operation associative? Find the inverses of 0,1,2,3, | 1 1 2 3 0
® if they exist. 2 2 3 0 1
o 3 3 0 1 2
® 2.13 Groups
2.  What are the field axioms? In what respect does the field of real numbers differ from We have considered, at some length, binary operations and their properties. We now
that of complex numbers? use our knowledge to classify sets according to the properties of operations defined on
them.
version: 1.1 version: 1.1
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First we state a few preliminary definitions which will culminate in the definition of a
group.

Groupoid: A groupoid is a non-empty set on which a binary operation x is defined.

Some authors call the system (S, *) a groupoid. But, for the sake of brevity and
convenience we shall call S a groupoid, it being understood that an operation X is defined
on it.

In other words, a closed set with respect to an operation X is called a groupoid.

Example 1: The set {£,0} where E is any even number and O is any odd number, (as already
seen) are closed w.r.t. addition.
It is, therefore, a groupoid.

Example 2: The set of Natural numbers is not closed under operation of subtraction e.g.,
For 4,5eN,4-5=-1¢ N
Thus (N, —) is not a groupoid under subtraction.

Example 3: As seen earlier with the help of a table the set {1,-1,i—i}, is closed w.r.t. .
multiplication (but not w.r.t. addition). So it is also a groupoid w.r.t X.
Semi-group: A non-empty set S is semi-group if;
i) Itis closed with respect to an operation % and
ii) The operation x is associative.

As is obvious from its very name, a semi-group satisfies half of the conditions required
for a group.

Example 4: The set of natural numbers, N, together with the operation of addition is a semi-
group. N is clearly closed w.r.t. addition (+).

AlsovabceN, a+((b+c)=(a+b)+c

Therefore, both the conditions for a semi-group are satisfied.

Non-commutative or non-abelian set: A set A is non-commutative if commutative law
does not hold for it.

For example a set A is non-commutative or non-abilian set under x when is defined as:
VX yEXKY =X

Clearly x Xy = x and y X x = y indicates that A is non-commutative or non-abilian set.

Example 5: Consider Z, the set of integers together with the operation of multiplication.
Product of any two integers is an integer.

Also product of integers is associative because Va,b,c€Z a.(b.c) = (a.b).c

Therefore, (Z,.) is a semi-group.

Example 6: Let P(S) be the power-set of S and let A,B,C, ... be the members of P. Since union
of any two subsets of S is a subset of S, therefore P is closed with respect to U . Also the
operation is associative.

(e.g. AU (BUC)=(AUB)U C,which is true in general),

Therefore,  (P(S),V) is a semi-group.

Similarly (P(S),N)is asemi-group.

Example 7: Subtraction is non-commutative and non-associative on N.

Solution: For 4, 5, 6, €N, we see that
4-5=—1and 5-4=1
Clearly 4-5#5-4
Thus subtraction is non-commutative on N.
Also 5-(4-1)=5-(3)=2and (5-4)-1=1-1=0
Clearly 5-(4-1) # (5-4)-1
Thus subtraction is non-associative on N.

Example 8: For a set A of distinct elements, the binary operation % on A defined by
XXy=x,Vx,yEA
is non commutative and assocaitve.

Solution : Consider

XX y=x andyx x=y
Clearly XXy # yXx
Thus * is non-commutative on A.

Monoid: A semi-group having an identity is called a monoid i.e., a monoid is a set S;
i) which is closed w.r.t. some operation X .
ii)  the operation X is associative and

version: 1.1
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iii) it has an identity.

Example 9: The power-set P(S) of a set S is a monoid w.r.t. the operation U,because, as seen
above, it is a semi-group and its identity is the empty-set @ because if A is any subset of S,
oUA=AU =A

Example 10:  The set of all non negative integers i.e., 2+ U{0}
i) is clearly closed w.r.t. addition,
i)  addition is also associative, and
iii)  0istheidentity of the set.
(@a+0=0+a=a0a VaezZ'U{0})
-.the given set is a monoid w.r.t. addition.

Example 11: The set of natural numbers, N. w.r.t. ®
i) the product of any two natural numbers is a natural number;
i) Product of natural numbers is also associative i.e.,
Vab ceN a.(b.c)=(ab).c
iii) 1€Nisthe identity of the set.
~.N'is a monoid w.r.t. multiplication

Definition of Group: A monoid having inverse of each of its elements under xis called a
group under X, That is a group under X is a set G (say) if

i) Gisclosed w.r.t. some operation X

i) The operation of X is associative;

iii) G has an identity element w.r.t. X and

iv) Every element of G has an inverse in G w.r.t. X.
If G satisfies the additional condition:

v) Forevery a,beG

a X b=b X qa

then G is said to be an Abelian* or commutative group under

Example 12: The set Nw.r.t. +
Condition (i) colsure: satisfied i.e.,,V a, b€ N,a+b € N
(i) Associativity: satisfied i.e.,
Y abce Na+b+c)=(@+b)+c
(iii)  and (iv) not satisfied i.e., neither identity nor inverse of any element exists.
~.Nis only a semi-group. Neither monoid nor a group w.r.t. +.

Example 13: Nw.rt ®
Condition: (i) Closure: satisfied
Vabe N, abeN
(i)  Associativity: satisfied
Vv ab,ce N, a.b.c)=(a.b).c
(iii) Identity element, yes, 1 is the identity element
(iv) Inverse of any element of N does not exist in N, so N is a monoid but not a
group under multiplication.

Example 14: Consider S = {0,1,2} upon which operation ®@has been performed as shown in
the following table. Show that S is an abelian group under ®.

Solution :

i) Clearly S as shown under the operation is closed.

ii)  The operation is associative e.g 0112
0+(1+2)=0+0=0 11210
O+1)+2=1+2=0etc. 210

iii)  Identity element O exists.
iv)  Inverses of all elements exist, for example
0+0=0,1+2=0,2+1=0
= 0'=0 17=2, 2"=1
v) Also @ is clearly commutativee.g.,1+2=0=2+1
Hence the result,

Example 15: Consider the set S = {1,-1,i —i). Set up its multiplication table and show that the
set is an abelian group under multiplication

version: 1.1
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Solution :
i) Sis evidently closed w.r.t.®.
i)  Multiplication is also associative

(Recall that multiplication of complex numbers is associative) T T[T -]
iii)  Identity element of Sis 1. AENEIEEN
iv)  Inverse of each element exists. —i|—if i ] 1]

Each of 1 and -1 is self inverse.
i and - i are inverse of each other.
v)  ® is also commutative as in the case of C, the set of complex numbers. Hence given
set is an Abelian group.

Example : Let G be the set of all 2 X 2 non-singular real matrices, then under the usual
multiplication of matrices, G is a non-abelian group.
Condition (i) Closure: satisfied; i.e., product of any two 2 X 2 matrices is again a matrix of
order 2 X 2.

(ii) Associativity: satisfied
For any matrices A, B and C conformable for multiplication.

AX(BXC)=(AXB)XC.

So, condition of associativity is satisfied for 2 X 2 matrices

(iii) Ll) ﬂ is an identity matrix.

(iv) As G contains non-singular matrices only so, it contains inverse of each of its
elements.
(v) We know that AB # BA in general. Particularly for G, AB # BA.
Thus G is a non-abilian or non-commutative gorup.

Finite and Infinite Gorup: A gorup G is said to be a finite group if it contains finite number
of elements. Otherwise G is an infinite group.

The given examples of groups are clearly distinguishable whether finite or infinite.
Cancellation laws: If g,b,c are elements of a group G, then

i) ab=0ac =>b=c (Left cancellation Law)

i) ba=ca =>b=c (Right cancellation Law)

version: 1.1
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Proof: (i) ab=ac = a” (ab)=0a"'(a ¢)
= (a'a)b=(a"'a)c (by associative law)
= eb=ec (~.a'a=e)
= b=c
ii) Prove yourselves.

2.14 Solution of linear equations

a,b being elements of a group G, solve the following equations:
i) ax=b, i) xa=b

Solution : (i) Given:ax=b = a'(ax)=a'b
=(a'a)x=a'b

=ex=a"b
= x=a'h which is the desired solution.

(by associativity)

i) Solve yourselves.

2.15 Reversal law of inverses

If a,b are elements of a group G, then show that

(ab)' =b'a’
Proof: (ab) (b'a ") =a(bb")a’ (Associative law )
=geq’
=aq "’
=e

-.a b and b'a? are inverse of each other.

version: 1.1
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Theorem: If (G, X ) is a group with e its identity, then e is unique.

Proof: Suppose the contrary that identity is not unique. And let e’ be another identity.
e, e’ being identities, we have
e’ Xe=e Xe=¢' (e is an identity) (i)
e’ Xe=e Xe'=¢ (e’i s an identity) (i)
Comparing (i) and (ii)
e'=e.
Thus the identity of a group is always unique.

Examples:

i) (Z, +) has no identity other then O (zero).
i) (7K —{0}, X ) has no identity other than 1.
iii)  (C,+) has no identity other than O + 0i.

iv)  (C,.) has no identity other than 1 + 0i.

1 0
v)  (M,.) has no identity other than {0 J
where M, is a set of 2 X 2 matrices.
Theoram: If (G, X ) is a group and a €G, there is a unique inverse of a in G.

Proof: Let (G, %) be a group and a €G.
Suppose that o’ and a” are two inverses of a in G. Then
a=a Xe=a X (g Xa") (a"is an inverse of g w.r.t. )
=(@*a)*xa" (Associative law in G).
=e X " (' is an inverse of a).
=q" (e is an identity of G).
Thus inverse of a is unique in G.

Examples 16:

i) ingroup (Z +), inverse of 1is-1 and inverse of 2 is -2 and so on.

version: 1.1
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i) ingroup (& —{0}, X )inverse of 3 is % etc.
Exercise 2.8

Operation & performed on the two-member set G ={0,1}is shown in the adjoining table.
Answer the questions: -

® | 0|1
i) Name the identity element if it exists? 0ol ol 1
i)  Whatis the inverse of 1? 171 1o
iii) s the set G, under the given operation a group?
Abelian or non-Abelian?
The operation @ as performed on the set {0,1,2,3} is shown @ | 0| 1]2]|3
in the adjoining table, show that the setis an Abeliangroup? |0 | 0 [ 1 | 2 | 3
For each of the following sets, determine whether or not the 111121310
set forms a group with respect to the indicated operation. ST 2131011
3(3[0]1]2
Set Operation
The set of rational numbers X
The set of rational numbers +
The set of positive rational numbers X
The set of integers +
The set of integers X o | E|O
Show that the adjoining table represents the sums of the elements Bl o
of the set {E, 0}. What is the identity element of this set? Show that this ol ol E

set is an abelian group.
Show thatthe set{1,m,w?}, when »’=1, isan Abelian group w.r.t. ordinary multiplication.
If G is a group under the operation and g, b € G, find the solutions of the equations:
axXx=b, xXa=b

Show that the set consisting of elements of the form a+~/3 b (a, b being rational), is an
abelian group w.r.t. addition.
Determine whether,(P(S), % ), where X stands for intersectionis a semi-group, a monoid

version: 1.1
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or neither. If it is a monoid, specify its identity.
9. Complete the following table to obtain a semi-group under X

- -]a

10. Prove thatall 2 X 2 non-singular matrices over the real field form a non-abelian group
under multiplication.

version: 1.1
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3.1 Introduction

While solving linear systems of equations, a new notation was introduced to reduce
the amount of writing. For this new notation the word matrix was first used by the English
mathematician James Sylvester (1814 - 1897). Arthur Cayley (1821 - 1895) developed the
theory of matrices and used them in the linear transformations. Now-a-days, matrices are
used in high speed computers and also in
other various disciplines.

The concept of determinants was used by Chinese and Japanese but the Japanese
mathematician Seki Kowa (1642 - 1708) and the German Mathematician Gottfried Wilhelm
Leibniz (1646 - 1716) are credited for the invention of determinants. G. Cramer (1704 - 1752)
applied the determinants successfully for solving the systems of linear equations.

A rectangular array o f numbers enclosed by a pair o f brackets such as:

(i)

AW o=
ro

is called a matrix. The horizontal lines of numbers are called rows and the vertical lines
of numbers are called columns. The numbers used in rows or columns are said to be the
entries or elements of the matrix.

The matrix in (i) has two rows and three columns while the matrix in (ii) has 4 rows and
three columns. Note that the number of elements of the matrix in (ii) is 4 X 3 =12. Now we
give a general definition of a matrix.

Generally, a bracketed rectangular array of mxn elements
a, (i=1,273,...m; j=1,2,3,..,n),arranged in m rows and n columns such as:

a, 4, a3 - 4,
yy Gy Ay 0 Oy, (iii)
_aml amZ am3 amn a

is called an m by n matrix (written as m X n matrix).

m X n is called the order of the matrix in (iii). We usually use capital letters such as A, B,
C X, Y, etc, to represent the matrices and small letters such as g, b, ¢.... , m, n,...,a,,, a,,, a,
..., €tc,, to indicate the entries of the matrices.

Let the matrix in (iii) be denoted by A. The ith row and the jth column of A are indicated
in the following tabular representation of A.

117

jth column
a, 4 4a; a; a,,
ay Ay Ay a,; a,,
ay 43 4y ay; as,
A = . . . . . (lV)
ithrow— | a4, @, a5 - a; - a,
_aml amZ am3 amj e amn_
The elements of the ithrowofAarea, a, a, ... 0j o a,
while the elements of the jth column of Aarea,; a, a, ... 0, .....q .

We note that g;is the element of the ith row and jth column of A. The double subscripts are
useful to name the elements of the matrices. For example, the element 7 is at a,, position in

i 2 -1 3
the matrix
-5 4 7

A=la]l, ,orA=[a] fori=1,23..,mj=1,23,..,n where ag,is the element of the ith
row and jth column of A.

The elements (entries) of matrices need not always be numbers but in the study of
matrices, we shall take the elements o f the matrices from R or from C.

version: 1.1
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0

.
N .
N o
0 04

H . H 1 H i . a a, @& a . . . . . .
Row Matrix or Row vector: A matrix, which has only one row, i.e.,, a 1 X n matrix of the matrix A. For example, | ™, “+| in the matrix the entries of the principal diagonal
form[a, a, a, ... a,]is said to be a row matrix or a row vector.

O“
*

..
0
.
0

Column Matrix or Column Vector: A matrix which has only one columni.e., anm X 1 are a

. 0,5 055, 0,, and the entries of the secondary diagonal area,, a,,, a,,, a,,.

[a,, | The principal diagonal of a square matrix is also called the leading diagonal or main
a,; diagonal of the matrix.
matrix of the form |4, | issaid to be a column matrix or a column vector.
i | Diagonal Matrix: Let A = [g,] be a square matrix of order n.
For example [1 -1 3 4]is a row matrix having 4 columns and is a column matrix having If a, =0 for all i # j and at least one a, # 0 for i = j, that is, some elements of the
3 rows. principal diagonal of A may be zero but not all, then the matrix A is called a diagonal matrix.

The matrices
Rectangular Matrix : If m # n, then the matrix is called a rectangular matrix of order m x

n, that is, the matrix in which the number of rows is not equal to the number of columns, is L o0 0 0000
: : 0100 , :
said to be a rectangular matrix. [7] |o 2 ojand | = | arediagonal matrices.
1005
00 0 4
2 30
2 31 1 2 4 :
For example; and are rectangular matrices of orders 2 X 3 and 4 x 3 . :
-1 4 3 -1 5 Scalar Matrix: Let A= [a,./.] be a square matrix of order n.
0 1 2 If a,= 0 for all i #j and a,= k (some non-zero scalar) for all i =, then the matrix A is

respectively. :
P y called a scalar matrix of order n. For example;

Square Matrix : If m = n, then the matrix of order m X n is said to be a square matrix of order

n or m. i.e., the matrix which has the same number of rows and columns is called a square 2 0 0 3000
: : 0 0300 : :

matrix. For example; [(7) 7} 0 « o0]and 00 3 ol scalar matrices of order 2, 3 and 4 respectively.

5 s 11 2 L0 0 a 00 0 3
[0], {_1 6} and |2 -1 8| aresquare matrices of orders 1, 2 and 3 respectively.

35 4
Let A = [a,] be a square matrix o f order n, then the entries a,,, a,,, a,, ..., a, form the Unit Matrix or Identity Matrix : Let A = [a,] be a square matrix of order n. If a, = 0 for all
principal diagonal for the matrix A and the entries a,,, a, ., a,,, ... d,,,,a,form the i#janda,=1foralli=j, then the matrix A is called a unit matrix or identity matrix of order
secondary diagonal for the n. We denote such matrix by I _and it is of the form:
version: 1.1 version: 1.1
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10 0 - 0] Transpose of a Matrix:
010 - 0
I,=[0 0 1 - 0 If Ais a matrix of order m X nthen an n X m matrix obtained by interchanging the rows
P : and columns of A, is called the transpose of A. It is denoted by A'. If [a,],, then the transpose
000 - 1] of A is defined as:
A=[a’],.,Wherea'=a,..fori=1,2,3, ..,nandj=1,23, ...,m
1 00
The identity matrix of order 3 is denoted by I, thatis, 7,=|0 1 0 b, b, b, b,
001 For example, if B=[b], ,= |b, b, by b, |, then
b31 b32 b33 b34
Null Matrix or Zero Matrix : A square or rectangular matrix whose each element is zero, is B'=1[b’], ;where b’,=b,fori=1,234andj=1,231ie,
called a null or zero matrix. An m X n matrix with all its elements equal to zero, is denoted
by O_ . Null matrices may be of any order. Here are some examples: T s b b
11 12 13 11 21 31
g LD bn Byl by by by
0 0 0]|0 O 0110 0070 b'y by, by by by by
[0].[0 0 0]’{0 0 OHO o}’ 8 : g 8 8 8 by by byl B by by
Note that the 2nd row of B has the same entries respectively as the 2nd column of B*and
O may be used to denote null matrix of any order if there is no confusion. the 3rd row of Bt has the same entries respectively as the 3rd column of B etc.
Equal Matrices: Two matrices of the same order are said to be equal if their corresponding Example 1:
entries are equal. For example,A=[a/] and
B= [b,.j]mxn are equal, i.e., A= Biff a;= b,.jfor i=1,2,3,...mj=1,23, .. , n. In other words, 1 0 -1 2 2 -1 3 1
A and B represent the same matrix. If 4=3 1 2 s|and B=|1 3 -1 4| thenshow that

0 2 1 6 31 2 -l
3.1.1 Addition of Matrices
(A+By=A+8
Two matrices are conformable for addition if they are of the same order.

The sum A + B of two m X n matrices A = [a,] and B = [b,] is the m x n matrix C = [¢,] formed Solution :
by adding the corresponding entries of A and B together. In symbols, we writeas C=A+B, 1 0 -1 2102 -1 3 1 142 0+4(=1) —1+3  2+1
thatis:[cij]=[aij+b,j] A+B=3 1 2 5{ |1 3-1 49 |81 43 21 5 4

0 2 1 6| |3 1 2 —1| |[0+43 =241 1+2 6+(-D)
wherec,=a,+b,fori=1,2,3,...,mandj=1,23, ....n 3 -1 23

Note that a, + b, is the (i, j)th element of A + B. =4 4 1 9}
3 -1 35
version: 1.1 version: 1.1
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and (A+B)=

3

O = h~ B

Taking transpose of A and B, we have

(1)

1 30 (2 1 3]
0O 1 2 -1 3 1
A == and B’ , SO
-1 2 1 3 -1 2
2 5 6] 14 -1
1 3 0 2 1 3 (3 4 3]
0O 1 -2 -1 3 1 -1 4 -1
A +B = + = (2)
-1 2 1 3 -1 2 2 1 3
2 5 6] |1 4 -1| |3 9 5]

From (1) and (2), we have (A + B)t = A + Bt
3.1.2 Scalar Multiplication

If A=[o,]is m x nmatrix and k is a scalar, then the product of k and A, denoted by kA, is
the matrix formed by multiplying each entry of A by k, that is,
kA = [ka,.j]
Obviously, order of kAis m x n.

IfA=[a]eM,, (the set of all m X n matrices over the real field R then ka, € R, for all i
and j, which shows thatkAe M__ . Itfollows thatthe set M possesses the closure property
with respect to scalar multiplication. If A, B M and r,s are scalars, then we can prove that
rsA)=(rs)A, (r+s)A=rA+sA r(A+B)=rA+rB.

3.1.3 Subtraction of Matrices

IfA= [a,.j] and B = [b,.j] are matrices of order m X n, then we define subtraction of B

A-B=A+(-B)
= [a,.j] + [—b,.j] = [a,.j—b,.j] fori=1,2,3,.mj=1,2,3,..,n
Thus the matrix A — B is formed by subtracting each entry of B from the
corresponding entry of A.

3.1.4 Multiplication of two Matrices

Two matrices A and B are said to be conformable for the product AB if the number
of columns of A is equal to the number of rows of B.

LetA= [a,.j] be a 2x3 matrix and B = [b,.j] be a 3x2 matrix. Then the product AB is defined
to be the 2x2 matrix C whose element ¢, is the sum of products of the corresponding
elements of the ith row of A with elements of jth column of B. The element c,, of Cis shown
in the figure (A), that is

First column of B

elLearn.Punjab

version: 1.1

from A as:

"'bll
‘ » b,
) b,
. a, a a5
2nd row of A AT
Fig.(A)
G = az1b11 + azzbz1 + az3b31' Thus
T b b b b b b
AB _{an ap a13:| b |:a11 11 T A0y T a0y 40 + a0y, T4, 32:|
= b1 Oy
) 4y dy b ayby, +ayb, +ayby,  a,b, +ay,b, +ayb;,
51 O3
b, b, 4 a 4
Similarly BA=|b, b, { e 13}
a a a
b b 21 Gy Ay
| D51 D3,
b,a, +b,a, b,a,+bya,, ba,+b,a,
=tbya, bpa, +b,a, bpa,, +h,a; bay
_b31a11 +by,a,  bya, +bya,, bya;+byan,

O,

version: 1.1
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AB and BA are defined and their orders are 2x2 and 3X3 respectively.

Note 1. Both products AB and BA are defined but AB # BA
2. If the product AB is defined, then the order of the product
can be illustrated as given below:

Order of A M XN
Order of B C nxp )
Order of AB mxp
2 -1 0 2 23

Example 2:If 4=|1 2 -3|and B=|-1 -4 6|, then compute A%B.
1 2 =2 0 -5 5

Solution :

2 -1 02 -1 0
A=44 |+ 2 3|+ 2 3
1 2 2|1 2 =2

4-1+0 -2-2+0 0+3+0 3 4 3
=|2+2-3 —-1+4-6 0-6+6|=1 -3
2+2-2 —-1+4-4 0-6+4 2 -1 =2

3 4 312 23
JAB=|1 -3 0|-1 -4 6
2 -1 =210 -5 5

6+4+0 —-6+16—-15 9-24+15 10 -5 O
=12+3+0 -2+4+12+0 3-18+0 (=5 10 -15
4+1+0 -4+4+10 6-6-10 5 10 -10

version: 1.1

3.2 Determinant of a 2 X 2 matrix

We can associate with every square matrix A over R or C, a number |A|, known as
the determinant of the matrix A.
The determinant of a matrix is denoted by enclosing its square array between vertical
bars instead of brackets. The number of elements in any row or column is called the order
of determinant. For example,

ifA:{a

C

b
d}’ then the determinant of A is “
C

b
‘. Its value is defined to be the real number

ad — bg, that is,

. 2 -1 1 4
For example, if 4= and B ,then
4 3 2 8

2 -1
|A|:4 3‘ =(2)3)-(-1)4)=6+4=10

1 4
and |B|=2 8‘ =(1)8)-(4)(2)=8-8=0
Hence the determinant of a matrix is the difference of the products of the entries in the

two diagonals.

version: 1.1



3. Matrices and Determinants

elLearn.Punjab

3.2.1 Singular and Non-Singular Matrices

A square matrix A is singular if |[A| =0, otherwise it is a non singular matrix. In the above

2 -1
example, |B| = 0 = b4 is a singular matrix and |A| =10 20 = A = is a
2 8 4 3

non-singular matrix.

3.2.2 Adjoint of a 2 X 2 Matrix

a b
The adjoint of the matrix A = L d} is denoted by adj A and is defined as: adj

. { d —b}
—C a
3.2.3 Inverse of a 2 X 2 Matrix

Let A be a non-singualr square matrix of order 2. If there exists a matrix B such that

1 0
AB=BA= I2 where 12 = {O J ,then B is called the

multiplicative inverse of A and is usually denoted by A7, that is, B= A"

Thus AA"=A'A=1[

1

z

Example 3: For a non-singular matrix A, prove that 4=

a b P q
Solution : If A= and A'= , Then:
c d ros

adjA

AAT = [, thatis,

sl -l

3. Matrices and Determinants

version: 1.1

or ap+br ap+bs| |1 0
cp+dr cq+ds 1o 1
{ap+br:1...—.l(i) = ap bs 0...(i1)
=

cp +dr=0..4iii)= cqg ds 1...(31v)

... €
From (iii), r = p p

Putting the value of rin (i), we have

a +b(_—c j—l:("d_bcj =1= d
p+b| —p T |p=1=p

- ad — bc

and r:_—cp:_—c d ¢

d° d ad—bec  ad-bc

Similarly, solving (ii) and (iv), we get

-b a
q: ) S =
ad —bc ad —bc
Substituting these values in {p q}, we have
ros
d -b
S = ad —bc ad —bc 1 d -b
—c a ad —bc|—c a
ad —bc ad —bc
o 1 .
Thus 4~ =— AdjA

z

version: 1.1
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53
Example 4: Find A" if A{1 J and verify that AA™T = A'A
53
Solution : |A|:‘1 1‘

Since |A|# 0, we can find A™.

A= iAde

z

Now AA" = 532 2
' S
2

5 3 15 15
—+

122 2 2] [t o .
T 1 3 {} ®

1
5 A |5 3
and A'.A= 2 2
-1 i 1 1
2

122 22| 1O .
== (11)
5 5 3.5/ |01
2

From (i) and (ii), we have

AAT = AA

version: 1.1
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3.3 Solution of simultaneous linear equations by using matrices

Let the system of linear equations be

(i)

ay X, +apx, =b }

ay X, +ayx, =b,

wherea,,, a,,, a,, d,,, b, and b, are real numbers,
The system (i) can be written in the matrix form as:

{a“ alz}ﬁ}:ﬁ} or AX =B (ii)
aZ] a22 xZ bZ
where A={a“ alz},X:{xl}Bz{bl}

ay Ay Xy b,

If |A| #0, then A" exists so (ii) gives
AT(AX)=A"'B (By pre-multiplying (ii) by A™)

or (ATAX=A"'B (Matrix multiplication is associative)
= X=A"'B (- A-1A:12)
= X=A'B

b
Thus :J : I

It follows from the above discussion that the system of linear equations such as (i) has

version: 1.1

a unique solution if |A| # 0.
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Example 5: Solve the following systems of linear equations.
2x, =4
i -xn=li+ = X 2x, 4 (i) The matrix form of the system HT e is
1) if) 2x, +4x, =12
x+x,=3]+ = 2x, 4x, 12
1 2x1] [4
. . . 3 —x, =1 =
Solution : (i) The matrix form of the system } is 2 4 x, 12
X +x,=3
3 1| x 1 1 2
11 |x | |3 and |4]= 5 4‘ =4-4=0,s0A" does not exist.
3 _1 x 1 . . . .
or AX=B....(I) where Az% } D% { 1} and B { } Multiplying the first equation o f the above system by 2, we have
1 1 X, 3 2x, +4x, =8 but 2x, + 4x, =12
S which is impossible. Thus the system has no solution.
|A|=‘ - ‘=3+1:4
- Exercise 3.1
1 1
and adj 4 :{ },therefore,
_ 2 3 1 7
3 1. If 4= and B , then show that
1 5 6 4
I 1
1f1 1 1 2 i) 4A-3A=A i) 3B-3A=3(B-A)
A== =
i ;
4 4 2. If 4 {i } show that A* =1
(D) becomes X =A"'B, thatis, !
1 1 3. Findxandy if
MR
B 3 1 2 1 3 1 1
X, _l i 3 ) X+ _ i X+ y
4 4 3 3y-4| |3 2 3 3y-4| |3 2x
1 3
4 T4 [ 12 3 0 3 2
|1 9l {2} 4. If 4= and B , find the following matrices;
L2 1 0 2 1 -1 2
4 4
& x =1andx,=2 ) 4A-3B=A i) A+3(B-A)

2 0 1 4 -2 3
5. Findxandy If N e
I y 3 0o 2 -1 1 6 1
version: 1.1

version: 1.1
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6. IfA= [a,.j]3X3, find the following matrices;
i) ﬂ(,uA):(ﬁ,u)A i) (/1+,L1)A:/IA+,UA i) /IA—A:(/l—l)A

7. IfA= [a,.j]2X3 and B = [b,.j] show that A(4+B)=14+ AB.

2x3!

1 2 0 O
8. If A=+ b}andAz {0 0},findtheva|uesofaandb.

a

9. |If Azzzl _l}andAz F O]findthevaluesofaandb.
a b 0 1

1 -1 2 2 3 0
10. If 4= and B , then show that (A + B) = At + B,
0 3 1 1 2 -1

I 1 3
11. Find A%if 4= 5 2 6
-2 -1 3

12. Find the matrix X if;.

. 5 2(-1 5 . 5 2 2 1
I P e
-2 11|12 3 -2 1 5 10

13. Find the matrix A if,

5 -1 3 -7
i) [0 0 |4=]0 O
3 1 7 2

rcosg 0 —sing|l cos¢g 0 sing
14. Show that 0 r 0 0 1 0 |=rl,.

rsing 0 cos¢g ||—rsing 0 rcos¢

3.4 Field

A set Fis called a field if the operations of addition ‘+ " and multiplication . " on F satisfy

the following properties written in tabular form as:

Addition Multiplication

Closure
i) Foranya,beF, Foranya,b € F,
a+beF a.beF
Commuytativity
i) Foranya,b e F, Foranya,b € F,
a+tb=b+a a.b=b.a
Associativity

iii) For any a,b,c € F,

(a+b)+c=a+(b+q)

Foranya,b,c e F,
(a.b).c=a.(b.c)
Existence of Identity
iv) For any For any
ac F,30 e Fsuch that
a+0=0+a=a a.l1=1.a=a
Existence of Inverses

a € F,3 -a € Fsuch that 3% e Fsuch that
a+(-a)=(-a)+a=0 e =Bya=1
Distributivity o

D, talb+c)=ab+ac
D.:(b+c)a=ba+ca

vi) For any a,b,c € F,

o e F,31 e Fsuchthat

v) For any v)ForanyaeF,a#0

All the above mentioned properties hold for Q, R, and C.

3.5 Properties of Matrix Addition , Scalar Multiplication and

Matrix Multiplication.

If A, Band C are nxn matrices and ¢ and d are scalers, the following properties

are true:

version: 1.1

version: 1.1
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1. Commutative property w.r.t. addition:A+B=B+A

2. Associative property w.r.t. addition: (A+B)+C-A+(B+ ()
3. Associative property of scalar multiplication: (cd)A = c(dA)
4. Existance of additive identity: A+ O=0+A-A (O is null matrix)
5. Existance of multiplicative identity: [A=Al=A ([ is unit/identity
matrix)
6. Distributive property w.r.t scalar multiplication:
(@) cA+B)=cA+cB (b) (c+td)A=cA+dA
7. Associative property w.r.t. multiplication: A(BC) = (AB)C
8. Left distributive property: AB+ C) = AB + AC
9. Right distributive property: (A + B)C = AC + BC
10. c(AB) = (cA)B = A(cB)
2 01 -1 0
Example 1: Find ABand BAif A=t1 4 2|and B=|2 3 1
3 0 6 -2 3
2 0 1)1 -1 0
Solution: AB=+1 4 2|2 3 1
3 0 61 -2 3

2x1+0x24+1x1 2x(=1)+0x3+1x(-2) 2x0+0x(-1)+1x3
= Ix1+4x2+2x1 1x(=1)+4x3+2x(-2) 1x0+4x(-1)+2x3
3x14+0x2+6x1 3x(=1)+0x3+6x(-2) 3x0+0x(-1)+6x3

3 -4 3
=11 7 2 (1)
9 —15 18
1 -1 o072 o0 1
BA=|2 3 ~-—1|1 4 2
1 =2 313 0 6

version: 1.1
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(Ix24+(=D)x1+0x3 1x0+(=1)x4+0x0 1x1+(=1)x2+0x6
=1 2%x2+43x1+(-1)x3 2x0+3x4+(-1)x0 2x14+3x2+(-1)x6
| Ix2+(-2)x1+3x3 1x0+(-2)x4+3x0 1IxI1+(-2)x2+3x6

(1 -4 -1
=4 12 2 (2)
9 -8 15

Thus from (1) and (2), AB # BA

Example2:If =+t1 0 4 2] ,then find AA*and (AY).

Solution : Taking transpose of A, we have

(2 1 3]
.= 0 5
A = , SO
3 4 2
0 -2 1]
2 1 3]
2 -1 3 0
-1 0 5
AA'=t1 0 4 2
3 4
-3 5 2 -1
0 -2 -1]

4414940 2+0+12+0 —6-5+6+0
={2+0+12+0 1+0+16+4 -3+0+8+2
| —6-5+6+0 -3+0+8+2 9+25+4+1
14 14 -5
=14 21 7
-5 7 39

version: 1.1
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2 1 -3
1 0 5 2 -1 3 0
t - t\ ) } 2 -1 3 0
AS A = 3 4 :2— , SO (A) 1 0 4 2 which is A, .
3 5 2 ] 7. If4=t1 0 4 2|thenfindAA'andAA.
[0 -2 1] 305 2 -1

Thatis, (A)*=A. (Note that this rule holds for any matrix A.) , _ _
8. Solve the following matrix equations for X:

Exercise 3.2

(2 3 2] 2 3 1
i) 3X-2A=B if A== L1 s and B s 4 J
1. IfA=[a], , then show that L . B
. I3xa ) (1 -1 2] (3 -1 0
) 1A=A ) Al,=A i) 2X-3A=B if A=t and B }
2. Find the inverses of the following matrices. =2 4 3] 4 2 1
M3 oo (2 31 (2 | 51 9. Solve the following matrix equations for A:
1) 1) ) | 1)
21 43 P 6 3 0 {4 3}4 {2 3 }_{—1 —4} i AF 1} {—1 2}{2 o}
3. Solve the following system of linear equations. 2 2 -1 2] [3 6 4 2] |3 1] [-15
i 2x,—3x,=5 i 4x,+3x,=5 . 3x,-5y=1 36 Determinants
5x,+x,=4 3x,— x,=7 —2x+y=-3
1 -1 2 2 1 -1 1 3 -2
4. 1f4=+3 2~ 5B 11 3 alandc=l 1 2 o | then find The determinants of square matrices of order n>3, can be written by following
1 0 4 1 2 1 3 4 1 the same pattern as already discussed. For example, if n =4
) A-B i) B-A i) A-B)-C iv) A-(B-0 _ _
ay, 4dp a4 4y ay, dyp Gz 4y
5 If 4— i 20 B- - 1 and € = 2i -1  then show that A= Ay Ay Ay Ay . then the determinat OfA=|A|= ayy Ay Ay Ay
1 —i 20 i —i i a3 4y A3y Ay a3 4y Ay Ay
a a a a a a a a
i) (AB)C=A(BC) ii) (A +B)C=AC+BC | “41 42 43 44 41 42 43 44
Now our aim is to compute the determinants of various orders. But before describing
6. IfAand B are square matrices of the same order, then explain why in general; a method for computation o f determinants of order n>3, we introduce the following
i) (A+B)>#A2+2AB+ B? i) (A—B)#A?—2AB+ B? definitions.

i) (A+B)A—B)#A?— B2

version: 1.1 version: 1.1
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3.61 Minor and Cofactor of an Element of a Matrix or its Determinant

Minor of an Element: Let us consider a square matrix A of order 3 .Then the minor of
an element a, denoted by .M,.jis the determinant of the (3 — 1) X (3 — 1) matrix formed by
deleting the ith row and the jth column of A(or|A]).

For example, if

a4 4
A=|a, a, a,|, then the matrix obtained by deleting the first row and the second

ay  dy  dsg

dy dy

column of A is { } (see adjoining figure) | a,, d,, a, | and its determinant is the

ay Ay
a4y dsg

minor of an, that is,

a a
Vi 21 23
12

ay Ay

Cofactor of an Element: The cofactor of an element a, denoted by A, is defined by A, = (-1)
"IXM,
where M, is the minor of the element a, of A or |A].

a, dy

For example, A, = (-1)"*M , = (-1)?

dy Ay

3.6.2 Determinant of a Square Matrix of Order n>3:

The determinant of a square matrix of order n is the sum of the products of each
elem ent of row (or column) and its cofactor.

a, 4 a4y a a,
ay Gy Ay a,; a,,
ay 4y Ay a,; a;,
If A=| : : : : : |, then
a, a, a, - a, - a,
a, a4, 4, a, a,, |

Al =a. A +a A, +aA . +..+a A fori=1,273..,n

or |[Al=a,A +a,A +a,A +..+a A forj=1,23,..,n
) ;o 2" 2 373 nj" nj
Putting i =1, we have
|Al =a,,A +a, A, +a A +..+a A whichis called the expansion of |A|by the first

127112 137113
row.

a4 dg
If Ais a matrix of order 3, thatis, 4=|a,, a, a,]|, then:

a3 43 Ay

|A| =a. A +a A, +aA +..+a A fori=1,273 (1)
or |[Al =a, At oA, +a A+ ... +a A forj=1,23 (2)
For example, fori=1,j=1andj =2, we have

|Al =03 AT apA LY OA )

or [A| :a11A11+021A21 +a31A31 (ii)

or |Af = 012A12+ azzAzz + 032A32 (iii)
(iii) can be written as:|A| =a (-1)"*M,, + a,(-1)*?M_,+ a,(-1)***M,,

e, |[Al =-a M +a, M, —a,M, (iv)
Similarly (i) can be written as |A| =a, M, —a M., —a, .M, (V)

Putting the values of M. ..M..: and M., in (iv). we obtain

ay dy a, A4y dy Ay
|A|:a11 —4ap +a;
ay, Ay ay Ay a4y
or |A | = 011(022033 - 023032) - 012(021033 - 023031) + 013(021032 - 022031) (vi)

or |[A| =a,0,,0,,+0,0,.0, +0,.0,0,-0,.0,.0,—0,.0,0,.-0.0,.0

"\
327 Y12M21Y33 Yq3M22Y3 (vi)

version: 1.1

version: 1.1
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The second scripts of positive terms are in circular order of
anti-clockwise direction i.e., these are as 123, 231, 312 (adjoining figure)
while the second scripts of negative terms are such as 132, 213, 321.

3. Matrices and Determinants elLearn.Punjab

3
An alternative way to remember the expansion of the determinant |A| given in (vi)' is
shown in the figure below.
Fig.
I -2 3
Example 1: Evaluate the determinantof 4=-2 3 1
4 -3 2
I -2 3
Solution: |4|=]-2 3 1
4 -3 2
Using the result (v) of the Art.3.6.2, that is,
|A| =a, M11 - 012M12 + C’13M13' we get,
1 -2 3
=17 el s
-3 2 4 2 4 3
=1[6 — 1(=3)] + 2[(-2).2 -1.4] + 3[(-2)(-3) -12]
=(6+3)+2(-4-4)+3(6-12)
=9-16-18=-25
version: 1.1

I -2 3
Example 2: Find the cofactors A, A,,andA,,if 4=|-2 3 1]|and
find |A]. 4 -3 2

Solution : We first find M., M,, and M.,

12!

2 1
4 2

1 3

M. . =
12 4 2

‘=—4—4=—8; M, =

‘=2—1 2=-10and M32=‘ 12 ?‘ =1-(-6) =7
Thus A, =(=1)"M_ =(-1)(-8)=8;, A,=(1)**M_,=1(-10)=-10
A, =(1)P2M,=1)7)=-7;
and |A| =a A, +0,A,+0,A,=(-2)8 +3(-10) + (-3)(-7)
=-16-30+21=-25
Note thata, A, +a, A, +a, A, =1(8)+(-2)(-10) + 4(-7)
=8+20-28=0
and a,A,+a, A +a,A,=3(8)+1(-10)+ 2(-7)
=24-10-14=0
Similarly we can show thata, A, +a, A, +0a, A =0;

a A +a A_+a_A_.=0anda A, +a A_+a A_=0;

11721 127722 137 23 117 731 127 32 137 33

3.7 Properties of Determinants which Help in their Evaluation

1. For a square matrix A, |A| =IA1

2. Ifin a square matrix A, two rows or two columns are interchanged, the determinant of the
resulting matrix is —|A|.

3. If a square matrix A has two identical rows or two identical columns, then |A| =

4. If all the entries of a row (or a column) of a square matrix A are zero, then |A| =0

5. If the entries of a row (or a column) in a square matrix A are multiplied by a number k
R, then the determinant of the resulting matrix is k |A].

6. If each entry of a row (or a column) of a square matrix consists of two terms, then its
determinant can be written as the sum of two determinants, i.e., if

a,+b, a, a;
B=|ay+b, a, ay|,

b then
ay +0;  ay,  dg

version: 1.1
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a,+b, a, a;| |a, a, a;| b, a, a;
|B|: ay, b21 =a,, Qy| |Gy Tdy Ay b21 Gy, Ay

a +by  ay, ay| |ay ay, agy| |by oay,  ag

7. Iftoeachentry of a row (or a column) of a square matrix A is added a non-zero multiple
of the corresponding entry of another row (or column), then the determinant of the
resulting matrix is |A|.

8. Ifamatrix is in triangular form, then the value of its determinant is the product of the
entries on its main diagonal.

Now we prove the above mentioned properties of determinants.

Proporty 1: If the rows and columns of a determinant are interchanged, then the value

of the determinant does not change. For example.

a a a a
1 12| _ _ 1 21
=0,0,,—-0,0,,=0.,0 a

a (rows and columns are interchanged)

119227 Y'Y T

a, A4y 12 YAy

Property 2: The value of a determinant changes sign if any two rows (columns) are
interchanged. For example,

a, 4
=a,.,0,,—0.0
11722 12721
ay Ay
a12 all — — i
and LT a,0,, —a,.0,=—a,.a,,-a,.a,)(columns are interchanged)
22 21

Property 3: If all the entries in any row (column) are zero, the value of the determinant is
zero. For example,

0 a, a;
a), dy

=0 (expanding by C)

0 a,, a23:O

as, Az ay dy

0 a, ay

Property 4: If any two rows (columns) of a determinant are identical, the value of the
determinant is zero. For example,

elLearn.Punjab

a
a =0, (it can be proved by expanding the determinant)
X

= o @
N O O

Property 5: If any row (column) of a determinant is multiplied by a non-zero number k, the
value of the new determinant becomes equal to k times the value of original determinant.
For example,

a, a .
|4|=]" |, multiplying first row by a non-zero number k, we get
ay 4y
ka, ka a, a
: ? = kaHaZZ o ka1zaz1 =k (011022_ 6712021) =k| " N
ay Ay 4y dy

Property 6: If any row (column) of a determinant consists of two terms, it can be written as
the sum of two determinants as given below:

a,+b, a, aj| |a, a, aj |b, a, a;
a, +b, a, ayl=la, a, ayl+lb, a, a,| (proofis leftforthe reader)

ay +by  ay, ay| |ay ay,  ap| by ay,  asg

Property 7: If any row (column) o f a determinant is multiplied by a non-zero number k and
the result is added to the corresponding entries of another row (column), the value of the
determinant does not change. For example,

a,  ap| |4 a,, + kay,

(k multiple of C, is added to ()

Ay Gyl |4y Gy tka,

It can be proved by expanding both the sides. Proof is left for the reader.

(2 2 3 4]
Example 3:If 4= ol , evaluate |A|
’ -5 -3 1 0
1 -1 0 2]

version: 1.1

version: 1.1
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y 2 3 4 1 1 b+c
Solution : 3 1 5 -1 =x(a+b+c) 1 1 c+a|, (byproperty5)
Al=
4| s 31 0 1 1 a+b
I -1 0 2 . .
=x(a+b+0).0(- C and C, are identical or by property 3)
0 0 3 0 -0
x 0 1 1
0 4 5 -7
= ByR, +(-2)R,, R, +(-3)R,and R, + 5R, 0 1 -1 -]
0 -8 1 10 Example 5: Solve the equation =0
I -2 3 4
I -1 0 2
-2 x 1 -1

Expanding by first column, we have

_ Solution: By C,+C,and C, + C,, we have
|A| =0.A,,+0A, +0A, + 1A, Y&t 5 a5

0O 3 0 0O 3 0 x 0 1 1
=(-D*'x|4 5 T7=(-=D|4 5 -7 0 1 0 0 I
-8 1 10 -8 1 10 1 -2 1 o) -
=(-1)(-3)[4 X 10 - (-7)(-8)] = 3(40 — 56) = - 48 -2 x x+1 x-1
x a+x b+c . i {

Example 4: Without expansion, show that —
P P ¥ brx ctal=0 Expanding by R,, we get | 1 1 2 [=0 (v (=1)2=1)

b
X c+x a+ 5 xal x—l

Solution : Multiplying each entry of C, by —1 and adding to the corresponding entry of C, i.e.,

X 1 1
by C, + (-1)C,, we get By R, +2R,weget |1 1 2 =0
0 x+3 x+3
X a+x b+c| |x a+x+(-)x b+c x 1 1
¥ btx cta=\x bix+(-hx c+a or (x+3)[l 1 2/=0 (bytakingx+3 common from R,)
X c+x a+b |x c+x+(-Dx a+b 01 1
x a b+c 1 a b+c|( byproperty 5 or x 1 1
=lx b c+a| =x|l b c+al| taking x common — x+3=0 or 1 1 2/=0
X ¢ a+b 1 ¢ a+b from C, 01 1

Il a+(b+c) b+c
= xX=-3 or x=0 (~ R, andR,areidentical if x=0)
Thus the solution set is {-3, 0}.

=x|l b+(c+a) c+al,

1 c+(a+b) a+b

adding the entries of C; to the
corresponding entries of C,

version: 1.1 version: 1.1
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3.8 Adjoint and Inverse of a Square Matrix of Order n>3

a, G4, a; 4, A, A,
If A=|a,, a, a,;|,thenthe matrix of co-factorsof 4=|4,, 4, A4,|,
a; Gy Ay 4, A, Ay
All AZI A31
and adjAd=|4, 4, 4,|,
A13 A23 A33
Inverse of a Square Matrix of Order n=>3: Let A be a non singular

square matrix of order n. If there exists a matrix B such that
AB=BA=1,then Bis called the multiplicative inverse of A and is denoted by A™. It is obvious
that the order of A'isn X n.
ThusAA'=1 and A'A= [ .

If Ais a non singular matrix, then

A7 :Lade
4]
1 0 2
Example 6: Find A'if 4={0 2 1
1 -1 1

Solution: We first find the cofactors of the elements of A.

A, =(=D" _21 1‘ =1.2+1)=3, A, =(-D" (1) 1‘ =(-1)(-1) =1

A, =(=D" (1) _21‘ =1.(0-2)=-2, A4, =(-1)" _O ?‘ =(-1)(0+2)=-2
A4, =(-1)*" 1 ?‘ =1.1-2)=-1,  A,=(-1)"" i _01‘ =(-)(-1-0)=1
A, = (-1 g f‘ =1.0-4)=-4, A,=(-1)" (1) f‘ =(-D1-0)=-1

version: 1.1
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A= (- 1)3+3

! 0—1(2 0)=2
0 2 B

_A“ 4, A; 3 1 2
Thus [Aij']3x3: 4, A, Ay 2 k1
_A3
3
1

. A, A -4 -1 2
2 -4
and adj4=[4;],;= -1 -1| (A} =A,forij=1,23)
2 1 2
Since |Al= aﬂAH + 012A12+ C’13’413
=1(3) +0(1) + 2(-2)
=3+0-4=-1,
3 2 4] [-3 2 4
So A*:iade:i 1 -1 -1(=[-1 1 1
4] -1
-2 1 2 2 -1 2
-1 2 L3
Example 7:I1f 4= 1 4 |and {2 J then verify that
2 -1
(AB)t= B'A
-1 2 ~1-4 3427 [-5 -1
. 1 3
Solution: so 4B=|1 4 :{ J: 1-8  3+4 |=|-7 7
2 -1 2+2  6-1 4 5
(ABY = -5 -7 4
-1 7 5

1 2/-1 1 2 -1 1 2 1 -2
and B'A" = A= and B' =
3 1 2 4 -1 2 4 -1 3 1

[-1-4 1-8 242] [-5 -7 4
342 344 6-1| |1 7 5

Thus (AB): = B At

version: 1.1
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Exercise 3.3

Evaluate the following determinants.

5 2 -4 5 2 3 1
. )y |3 -1 =3 i) |3 -1 1| iii) |-1
-2 1 2 -2 1 =2 -2
a+l a-1 a 1 2 =2 2a a
wv) |a a+l a-Ill v)|-1 1 3 vi) |b 2b b
a—Il a a+l 2 4 -1 c c

2. Without expansion show that

6 7 8 2 3 -1 1 2 3
) 3 4 5]=0==i) |l 1 0] 0 ii) [4 5 6
2 3 4 2 -3 5 7 8 9

3. Show that

a, a, a3+t |4, a, a3 |4, a, Q;
) lay ay aytay|=la, ay ayltla, a, oy

Ay 4y Ay T Q| |Gy Ay Q| (A Ay Oy

2 3 0 21 0 a+!l a a

i) 13 9 6/=9]1 1 2| ii) a a I+ a l%(3a ¥
2 15 1 2 5 1 a a a+l
1 1 1 1 1 1 b+c a a

w) |x y z|=|x y 4| v) | ¢ a b

a rcos¢p 1 —sing
vi) la b Ol=d’ b  vii) 0 1 6 r
b

rsing 0 cos¢

a b+c a+b
vili) | c¢+a b+c|=a’ +b +c’ —3abe
c a+b c+a

vz zx Xxy| |x° y oz c c a+b

a+ /A b c
1X) a b+Ad ¢ |=A*(a+b+c+A)
a b c+A

1 1 1
x) |a b c|=(@—-Db)b-c)c - a)
a b

b+c a a
xi) |lc+a b b*|=(@a+b+c)a - b)b — c)c — a)

a+b ¢ c*

I 2 -3 5 -2 5
4. If f A=/ 0 2 O |andB=| 3 1 4 |then find;
-2 =2 1 -2 1 =2
) ALA,A,and |A| i) B,,B,,B,and|B|
5. Without expansion verify that
1 a 4
a B+y 1 1 2 3x bbc
i) | y+a 1|=0 i)=2 3 6 0 iii) I »* —| 0
y a+p 1 35 Ox “
1 ¢ <
ab

a-b b—-c c-a
v) |b—c c—a a-b|=0
c—a a-b b-c

bc ca ab

> |-
a o~

X Q|-

version: 1.1
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c
—b
0

mn | ||l I* P
vi) |nl m m’|=|l m*® m
Im n n| |l n°
2a 2b 2c
Vi) la+b 2b  b+c
a+c b+c 2c
7 2 6/ |7 2 7 7 2 -1 —a 0
vin)|6 3 2(=|6 3 5|+|6 3 -3 ix) [0 a
-3 5 1] -3 5 31 -3 5 4 b —c
6. Find values of x if

3 1 x I x-1 3 1 2 1
) -1 3 4=230# | kx 1=2/ 0ii)) 2 x 2/ 0

x 1 0 2 -2 x 3 6 x

7. Evaluate the following determinants:

3 4 2 7 2 3 1 -1 -3 9 1
125 0 3 .4 0 2 1| ... 10 3 -1
1) 1) 111)

1 2 -3 5 5 2 -1 6 9 7 -1

4 1 -2 6 3 -7 2 2 -2 0 1

x 1 1 1
I x 1 1
8. Show that =(x + 3)x - 1)
1 1T x 1
I 1 1 x

9. Find |AA| and |AA| if

NE T L
1) =T, 3 11)

D~ N W

W = = N

version: 1.1

10. If Ais a square matrix of order 3, then show that |KA|=k3|A].
11. Find the value of 4 if 4 and B singular.
51 2 0]

5

4= , B=

[ NS I N AN
W W
—— O\ W

8 2 1
3 2 1
2 A -1 3

12. Which of the following matrices are singular and which of them are
non singular?

11 2 -]
1 0 3 2 3 -1
: . ... |12 -1 =3
) |3 1 -1 w|l 1 0] 1)
2 3 1 2
0 2 4 2 -3 5
3 -1 3 4]
2 1 0
13. Find the inverse of 4=|1 1 0]|andshowthatA'A=1,
2 =35

14. Verify that (AB)" = B'A" if

_ {1 2} {—3 1% - {5 1} {4 3}
1) A: = ,£ 11) A ,B
-1 0 4 -1 2 2 2 1

15. Verify that (AB) = B Atand if

1

1
1 -1 2
A= and B |3 2
0 3 1 {

16. If A:B | } verify that (47')'=(4")"

17.1f Aand B are non-singular matrices, then show that

)  AB)'=B'AT i) (A=A

version: 1.1
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3.9 Elementary Row and Column Operations on a Matrix

Usually a given system of linear equations is reduced to a simple equivalent system by
applying in turn a finite number of elementary operations which are stated as below:
1. Interchanging two equations.
2. Multiplying an equation by a non-zero number.
3. Adding a multiple of one equation to another equation.

Corresponding to these three elementary operations, the following elementary row
operations are applied to matrices to obtain equivalent matrices.
i) Interchanging two rows
i) Multiplying a row by a non-zero number
iii) Adding a multiple of one row to another row.

Notations that are used to represent row operations for I to III are given below:
Interchanging R, and R, is expressed as R <R, .
k times R, is denoted by kR. — R’
Adding k times R to R, is expressed as R, + kR, — R/,
(R"is the new row obtained after applying the row operation).

For equivalent matrices A and B, we write A R .B.

If ARB then BRA. Also if ARB and BRC, then AR C. Now we state the elementary column
operations and notations that are used for them.
) Interchanging two columns C, < C,
ii) Multiplying a column by a non-zero number kC. — C,
iii) Adding a multiple of one column to another column C, + kC, — C,

Consider the system of linear equations;

x+y+2z=1
2x—y=8z=12} which can be written in matrix forms as

eLearn.Punjab

version: 1.1

3x+5y+4z= 3

11 2x] [1 12 3
2 -1 8||ly|={12| OF [x y z]j1 -1 5|=[1 12 -3]
3 5 4)z] |3 2 8 4
thatis, AX=B (i) X'4 =B (ii)
11 2 x 1
where A=2 1 85X |y| and B |12
3 5 4 z -3

Ais called the matrix of coefficients.
Appending a column of constants on the left of A, we get the augmented matrix of the
given system, that is,

1 1 2 : 1
2 -1 8 : 12 (Appended column is separated by a dotted line segment)
3 5 4 : 3

Now we explain the application of elementary operations on the system-of linear equations
and the application of elementary row operations on the augmented matrix of the system
writing them side by side.

x+y+2z=1 11 21
2x+—-y+8z=1R 2 1 8 : 12
3x+5y+4z= 3 3 5 4 : 3

Adding -2 times the first equation to the  (By R+ (-2)R, —R’,and
second and -3 times the first equationto R, + (-3)R,— R’,, we get)
the third, we get

x+y+2z=1 11 2 : 1
“3y+4z=10 Rlo 3 4 t 10
2y—2z= 6 0 2 -2 : -6

version: 1.1
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Interchanging the second and third equations, we have (By R, <R, we get)

x+y+2z=1 1 1 2 : 1
2y-2z= 6 RIO 2 -2 : -6
_3y+4z=10 0 3 4 : 10

Multiplying the second equation by % we get By %RZ —R’, we get.

x+y+2z=1 11 2 : 1
y—z=-3 Rlo 1 11 3
—3y+4z=10 0 -3 4 : 10

Adding 3 times the second equationto By R, + 3R,—R’,, we obtain, the third, we obtain,

2= 3 RO 1 -1 i =3
E ...... ..°Z:1 O O 1 E 1

The given system is reduced to the triangular form which is so called because on the left
the coefficients (of the terms) within the dotted triangle are zero.
Puttingz=1iny-z=-3,wehavey-1=-3=y=-2
Substiliting z =1, y = -2 in the first equation, we get
X+(-2)+2(1)=1=x=1
Thus the solution set o f the given system is {(1, -2,1)}.
Appending a row of constants below the matrix A’, we obtain the

1 2
augmented matrix for the matrix equation (ii), that is L -5

2 8

1 12 -3

Now we apply elementary column operations to this augmented matrix.

version: 1.1
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By C, + (-2)C, — C’, and
G+ (-3)C, — C,

NS
o0
@
S
N
I
\S)

Cl2 =2 4| ByGC,oC, C|l2 -1 4 By%Cz—>C’2

1 -6 10| 1 =3 10|
1 0 0]
I 1 O
Cl2 -1 1[Byc, +3C,>C,
1 -3 1]
1 0 O
Thus [x y z]|1 1 0|=[1 -3 1]
2 -1 1

or [x+y+2z y-z z]=[1 -3 1]

x+y+2z=1
= y—z=-3
z=1

Upper Triangular Matrix: A square matrix A = [a,] is called upper triangular if all elements
below the principal diagonal are zero, that is,

a,=0foralli>j
Lower Triangular Matrix: A square matrix A =[o,] is said to be lower triangular if all elements
above the principal diagonal are zero, that is,

version: 1.1
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Triangular Matrix: A square matrix A is named as triangular whether it is upper triangular
or lower triangular. For example, the matrices

L 2 3 0 0 O
3 200 . .
0 1 4|and L s o are triangular matrices of order 3 and 4
0 0 6
-1 2 3 1]

respectively. The first matrix is upper triangular while the second is lower triangular.

Symmetric Matrix: A square matricesA = [a,] is called symmetric if A*= A.
From A=A, it follows that [a’,.j]nxn = [a,.j]nxn

which implies thata’,= a,fori,j=1,2,3, ... , N

but by the definition of transpose, a’, = a,fori,j=1,2,3, ....... , N.
Thusa,=a, fori j=1,23, ....n.

and we conclude that a square matrix A = [a,.j]nxn is symmetric if a,=0,

For example, the matrices

I 3 -1
137 |¢ g 30 5 6
,|h b f|and are symmetric.
3 2 y S -2
c
& 16 2 3]

Skew Symmetric Matrix : A square matrix A = [a,] ,  is called skew symmetric or anti-
symmetric if A* = —A.
From Af = —A, it follows that [a’,.j] =fori,j=1,23, ... , N
which implies thata’,=-a, fori j=1,23, .. , N
but by the definition of transpose a’,=a, for/,j=1,2,3,...n
Thus-a,=0,0ra,=-a,

Alternatively we can say that a square matrix A = [a,] = is anti-symmetric

elLearn.Punjab
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if a,=-0,.

For diagonal elementsj =1/, so

a.=-a,or 20.=0= a=0fori=1,23,.... . h
0O 4 1
ForexampleifB=|4 0 -3|then
-1 3 0
0 4 -1 0 -4 1
B'=|-4 0 3|=(-1)|4 0 -3|=-B
1 -3 0 -1 3 0

Thus the matrix B is skew-symmetric.
LetA= [aij] be an n x m matrix with complex entries, Then the n x m matrix [a,.j] where a, is the

complex conjugate of a, for all j, j, is called conjugate of A and is denoted byZ . For example, if

3—i  —i — 3= < 347 i
A= == |,then 4 _
20 1+ 2i  1+i =20 1-i

Hermitian Matrix: A square matrix A =[a,]  with complex entries, is called hermitian if (Z)t
=A.

From, (4) =Aitfollows that [z, ] =[a],,, which implies that @, = a, fori,j=1,2 3,....n but

by the definition of transpose, a; = @, fori,j=1,2,3,...., n.

Thus a,= g, fori,j=1,2,3,...., nand we can say that a square matrix
A= [a,.j]nxn is hermitian if a,=0, fori,j=1,2,3,....n.
For diagnal elements, j=iso a,=a, which implies that g isreal fori=1,2,3, ..., n

1 1-i
For example, ifA={ l},then
I+i 2

= 1 1+ —\t 1 1-i
IS O I
1-i 2 I+i 2

Thus A is hermitian.

version: 1.1
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Skew Hermitian Matrix: A square matrix A = [g,]  with complex entries, is called skew-
hermitian or anti-hermitian if (4) = -A.

From (A)t = —A, it follows that [c_zﬂ = [-0,],,,
which implies that @, = -a,fori,j=1, 2, 3,.., n.
but by the definition of transpose, a_,;. =a, fori, j=1,2, 3,..n
Thus —a, =@, or a,= —a;, fori, j=1, 2, 3, .., n.
and we can conclude that a square matrix A = [a,.j]nxn is anti-hermitian if a,= —a;
For diagonal elements j=/i,s0 a,= —ai: = a,+ —a; =0
which holdsifa,=0or a, = iA where 4 is real
because0+0=00ril +il =il —il =0

0 2+3i

For example, if A =
-2+43i 0

— 0 2+3i
A:
-2+ 30 0

- (Z)t{ 0. —2+3z}=(_1){ 0 | 2—31'}:_/\
2+ 30 0 -2 -3 0

Thus A is skew-hermitian.

},then

3.10 Echelon and Reduced Echelon Forms of Matrices

In any non-zero row of a matrix, the first non-zero entry is called the leading entry of
that row. The zeros before the leading entry of a row are named as the leading zero entries
of the row.

Echelon Form of a Matrix: An m x n matrix A is called in (row) echelon form if

i) In each successive non-zero row, the number of zeros before the leading entry is greater
than the number of such zeros in the preceding row,

ii)  Every non-zero row in A precedes every zero row (if any),

iii)  The first non-zero entry (or leading entry) in each row is 1.

version: 1.1
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01 -2 4 1 2 -3 4
The matrices|0 0 1 2|and |0 0 1 2| areinechelonform
0 0 0 O 0 0 0 1
00 1 2 01 -2
but the matrices |0 1 3 -1jand |0 0 -1| arenotin echelonform.
0 0 O 0 0 4

Reduced Echelon Form of a Matrix: An m x n matrix A is said to be in reduced (row)
echelon form if it is in (row) echelon form and if the first non-zero entry (or leading entry) in
R;lies in C;, then all other entries of C; are zero.

01 0 4 1 2 0 0
The matrices |0 0 1 2| and [0 0 1 0| arein(row)reduced
0O 0 0 O 0 0 0 1

echelon form.

Example 1: Reduce the following matrix to (row) echelon and reduced (row) echelon form,

2 3 -1 9
I -1 2 -3
31 3 2
2 3 -1 9 1 -1 2 -3
Solution: 1 -1 2 -3 RI2 3 -1 9| ByR ©R
31 3 2 31 3 2
(1 -1 2 -3 ot -1 2 03
Rlo 5 —s 15| YRICDRSRL Ll 3 ey Le Sor,
- and R,+(-3)R, > R', ~
0 4 3 11 0 4 3 11
1 -1 2 =3 1 0 1 0
R0 1 -1 3 |ByR +(-4)R,—>R', R|0O 1 -1 3 |ByR +l.R, >R,
0 0 -1 -1 0 0 1 -1

version: 1.1
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ool By R +(—1)R, > R'
- —
Rlo 1 0 2f 7™ 27
- 0 0 1 and R,+ 1.R, > R',
1 -1 2 3 1 0 0 1
Thus|0 1 -1 3 |land|0 1 0 2 |are(row)echelonandreduced (row)echelonforms
0O 0 1 -1 0O 01 -1

of the given matrix respectively.
Let A be a non-singular matrix. If the application of elementary row operations on A4:7 in
succession reduces A to I, then the resulting matrix is 7: 47",

A
Similarly if the application of elementary column operations on - in succession reduces
1

Ato I, then the resulting matrix is %

4 1
Thus 4:1 R I:4" and - C -
I 4
2 5 -1
Example 2: Find the inverse of the matrix A= |3 4 2
I 2 2
2 5 -1
Solution: [4|=|3 4 2 |=2(-8-4)-5(-6-2)-1(6-4)=-24+40-2
1 2 =2
=40-26=14 As |A| #0, so Ais non-singular.
2 5 -1 1 00
Appending I, on the left of the matrix A, we have |3 4 2 010
1 2 2 0 0 1

Interchanging R, and R, we get..

2]

— O O
oS = O

1 2 =2 :0 0 1 1 2 2
34 2 :01 O|RI0O 2 8
25 -1 :1 00 0 1 3
By —%Rz — R',, we get
1 2 270 0 17|10 6
01 -4 0 —l i RI0O 1 -4
2 2|
01 3 11 0 2] |, .
By =R, > R',, we have
106 :0 1 —2f|F00
01 —4:0 -2 201 0
2 2|7
00 1 : L L Lty o
i 7 14 2] |
6 4
7 7
. | 4 3
Thus the inverse of Ais | -—— ——
7 14
1
7 14
Appending I, below the matrices A, we have
2 5 —1]
3 4 2
1 2 =2
1 0 O
01 0
0 0 1 |

ByR, +(-3)R, > R,
5 and R, + (-2)R, > R/,

By R, +(-DR, > R/,
and R, + (-2)R, > R,

1 |ByR +(-6)R, >R
2| andR,+4R, > R,

version: 1.1
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Interchanging C, and C,, we get

(2 5 —1] -1 5 2]
3 4 2 2 4 3
2 =2 -2 21
............ Q C
1 00 0 0 1
01 0 01 0
00 1 | 10 0 |

-1

.| By(-1)C, — C,
0 1

10
0 0

By C, + (-5)C, — C’,and C, + (-2)C, — (', we have

i i 1 0 0]
1 0 0 21
-2 14 7
2 -2
2 -8 3 7
0 0 1 0 0 1
0 1 0 0 1 0
-1 5 2 | 14
-1 El 2
14

1 '
By HC2—>C2

By C, +(2)C, — C’, and C, + (-7)C, — (', we have

1 0 0 10 0
0 1 0 01 0

6 4, 00 1
L I B

o o 1|¢77 7
11 1] |4 3

7 14 2 7 14

> 5 1| |1 1
7 14 2] L7 14 2

By C, + (—gjq >C"

and C, +(§j C,—-C,

version: 1.1

B 4

7 7
Thus the inverse of A is i —i
7 14

1 1

7 14

Rank of a Matrix: Let A be a non-zero matrix. If r is the number of non-zero rows when it is
reduced to the reduced echelon form, then ris called the (row) rank of the matrix A.

1

-1 2 3

Example 3: Find the rank of the matrix |2 0 7 -7

1 -1 2 -3 1 -1 2
Solution: {2 0 7 -7 | R0 2 3
3 1 12 -11 0 4 6
1 -1 2 -3 1 -1
RIO 2 31 Ble2—>R'2R0 1
= 2 2 2 -
0 4 6 -2 0 0
-
2 2
3001 ,
RO 1 E ByR +1.R, >R
00 0 O

3

-3
-1
-2

S N|W

1 12 -11

ByR, + (-2)R, > R/,
and R, + (-3)R, > R/,

——|ByR, +(-4)R, > R/,

As the number of non-zero rows is 2 when the given matrix is reduced to the reduced
echelon form, therefore, the rank of the given matrix is 2.
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Exercise 3.4

I -2 5 -3 1 2
1. IfA=|-2 3 -1landB=|1 0 -I1|thenshowthatA+ Bissymmetric.
5 -1 0 -2 -1 2
2 0
2. IfA=13 2 -1}| ,show that
-1 3 2

i) A+ Atis symmetric i) A—Atis skew-symmetric.
3. If Ais any square matrix of order 3, show that

i) A+ Atis symmetric and i) A—Atis skew-symmetric.
4. |f the matrices A and B are symmetric and AB = BA, show that AB is symmetric.
5. Show that AA* and A’A are symmetric for any matrix of order 2 x 3.

6. IfA= B 1+.l} ,show that

l
i) A+ (Z)t is hermitian i) A- (Z)t is skew-hermitian.
7. If Ais symmetric or skew-symmetric, show that A% is symmetric.
1

8. IfA=|1+i|,find 4(4).

1

9. Find the inverses of the following matrices. Also find their inverses by using row and
column operations.

1 2 3 I 2 -1 1 -3 2
D |0 -2 0 i) |0 -1 3 i) (2 1 0
-2 -2 2 I 0 2 -1 1

version: 1.1

10. Find the rank of the following matrices

1 —4 7] 3 -1 -1
b-bad 2 -5 17 T 2 31 03 2
) (2 -6 5 1| ii - i) I
1 =2 3 2 3 4 2 5
3 5 4 -3
3 -7 4| 2 5 2 -3 3

3.11 System of Linear Equations

An equation of the form:
ax + by =k (i)
wherea#0,b#0,k#0
is called a non-homogeneous linear equation in two variables x and y.
Two linear equations in the same two variables such as:
ax+by=k } 0
a,x+b,y=k,

is called a system of non-homogeneous linear equations in the two variables x and y if
constant terms k., k, are not both zero.
If in the equation (i), k=0, thatis, ax + by =0, then it is called a

homogeneous linear equation in x and y.

If in the system (1), k, = k, = 0, then it is said to be a system of homogenous linear
equations in x and y.

An equation of the form:
ax+by+cz=k (1))
is called a non-homogeneous linear equation in three variables x, yand zifa#0,b #0,c# 0
and k # 0. Three linear equations in three variables such as:

ax+by+cz=k
ax+by+c,z=k, (1)

Q)

a,x+b,y+c,z=k,

version: 1.1
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is called a system of non-homogeneous linear equations in the three variables x, y and z, if
constant terms k., k, and k, are not all zero.
If in the equations (ii) k = 0 that is, ax + by + cz = 0.
then it is called a homogeneous linear equation it x, y and z.
If in the system (II), k, = k, = k, = 0, then it is said to be a system of homogeneous linear
equationsin x; yand z.
A system of linear equations is said to be consistent if the system has a unique
solution or it has infinitely many solutions.
A system of linear equations is said to be inconsistent if the system has no solution.
The system (II), consists of three equations in three variables so it is called 3 x 3 linear

system but a system of the form:
xX—y+2z =6
2x+y+3z=4

is named as 2 x 3 linear system.
Now we solve the following three 3 x 3 linear systems to determine the criterion for a system
to be consistent or for a system to be inconsistent.

2x+5y—-z =5 x+y+2z=1
3x+4y+2z=11 (1), 2x—y+7z=11 (2)
xX+2y—-2z= 3 3x+5y+4z= 3
x—y+2z=1
and 2x-6y+5z=7 ee(3)
3x+5y+4z= 3

The augmented matrix of the system (1) is

25 -1 : 5
34 2 : 11
1 2 =2 : 3

We apply the elementary row operations to the above matrix to reduce it to the equivalent
reduced (row) echelon form, that is,

version: 1.1
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2 5 -1 5 1 2 2 -3
3 4 2 P 11|R|3 4 2 ! 11| BY R <R,
1 2 2 -3 2 5 -1 S
1 2 -2 -3 1 2 -2 -3
R[0 2 8 © 20BYR+(-3)R >R, R0 -2 8 i 20|BYR,+(-2R >R
2 5 -1 : 5 0 1 3 : 11

1 2 -2 -3 1 0 6 : 17
, By R+ (-2)R, > R/,
01 4 -10|R|O0 1 -4 : -10
- , and R, +(-1),R, > R,
0 1 3 11 0o 0 7 : 21
1 0 6 : 17 1 00 -
_ 1 , By R+ (—-6)R, > R/,
RI0OO1 -4 : -10|BY =R3—>R3 R|0O 1 0 2
i : 7 i and R, + 4R,, R,
00 1 : 3 0 0 1

Thus the solutionisx=-1,y=2and z = 3.
The augmented matrix for the system (2) is

1 1 2 : 1
2 -1 7 : 11
35 4 : 3

Adding (-2)R, to R, and (-3)R, to R,, we get

1 1 2 : 1 1 1 2
2 -1 7 : 11 RIO -3 3 : 9
35 4 : 3 0 2 -2 : -6
11 2 : 1 1 0 3 : 4
. 1 . IBYR +(=1)R, > R,
RIOO1 -1 : -3|By——R,—»>R, RIO 1 -1 : -3
) . 3 - . and R, +(-2)R, > R;
0 2 -2 : -6 00 0 : O

version: 1.1

=)



3. Matrices and Determinants

elLearn.Punjab

3. Matrices and Determinants

The system (2) is reduced to equivalent system

or

1
2
3

x+3z=4
y-z=-3
0z=0

The equation 0z = 0 is satisfied by any value of z.
From the first and second equations, we get
x=-3z+4 ... (a)
and y=z-3 ... (b)
As zis arbitrary, so we can find infinitely many values of x and y from equation (a) and (b)
the system (2), is satisfied by x =4 - 3t, y=t -3 and z = t for any real value of t.
Thus the system (2) has infinitely many solutions and it is consistent.

1 -1 2 : 1
The augmented matrix of the system (3)is|2 -6 5 : 7
3 5 4 : 3

Adding (-2)R,, to R, and (-3)R,, to R, we have

-1 2 i1 1 -1 2 1
-6 5 7 RIO -4 1 : 5
5 41 3 0 8 2 : -6
_ : .
1 -1 2 I Lo - =
ByR +1.R, >R
0 1 -+ —éBy—leaR;ROI—l 2 YRR .
4 4 4 4 |and Ry +(-8)R, > R,
0 8 -2 -6 00 0 4

Thus the system (3) is reduced to the equivalent system
X+—z=

1
y-—z=

4
0z=4

Al =

version: 1.1
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The third equation 0z = 4 has no solution, so the system as a whole has no solution. Thus the
system is inconsistent.

We see that in the case of the system (1), the (row) rank of the augmented matrix and the
coefficient matrix of the system is the same, that is, 3 which is equal to the number of the
variables in the system (1).

Thus a linear system is consistent and has a unique solution if the
(row) rank of the coefficient matrix is the same as that of the augmented matrix of the
system.

In the case of the system ( 2), the (row) rank of the coefficient matrix is the same as that
of the augmented matrix of the system but it is 2 which is less than the number of variables
in the system (2).

Thus a system is consistent and has infinitely many solutions if the (row) ranks of the
coefficient matrix and the augmented matrix of the system are equal but the rank is less
than the number of variables in the system.

In the case of the system (3), we see that the (row) rank of the coefficient matrix is not
equal to the (row) rank of the augmented matrix of the system.

Thus we conclude that a system is inconsistent if the (row) ranks of the coefficient matrix
and the augmented matrix of the system are different.

3.11.1 Homogeneous Linear Equations

Each equation of the system of following linear equations:

a,x,+a,x, +asx;, =0 ... (1)
Ay X, +a,x, +a,x, =0 ... (11)
aux, +a,x, +a,x, =0 ... (iii)

is always satisfied by x, =0, x, = 0 and x, = 0, so such a system is always consistent. The
solution (0, 0, 0) of the above homogeneous equations (i), (ii), and (iii) is called the trivial
solution. Any other solution of equations (i), (ii) and (iii) other than the trivial solution is
called a non-trivial

solution. The above system can be written as

0
AX=0,where0=|0
0

version: 1.1
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If |A| #0, then A is non-singular and A" exists, that is,
A'AX)=A"0=0

X, 0
or A'AX=0=X=0, i.e, x, =0
X 0

In this case the system of homogeneous equations possesses only the trivial solution.
Now we consider the case when the system has a non-trivial solution.

Multiplying the equations (i), (ii) and (iii) by A,,, A,, and A, respectively and adding the
resulting equations (where A, ., A,. and A, are cofactors of the corresponding elements of A),
we have
(011A1‘| + aZ1 A21 + 031 A31)x1 + (012A11 + 022A21 + a32A31)x2+(a13A11 + 023A21 + 033A31)x3 = O’ that iS,
|A|x, = 0. Similarly, we can get |A|x,=0and |A|x,=0

For a non-trivial solution, at least one of x,, x, and x, is different from zero. Let x, # 0, then
from |A|x, =0, we have |A| =0.
For example, the system

X, +Xx, + X, =0 (I)
X, — X, +3x, =0 (H)
x, +3x, — x; =0 (IH)

has a non-trivial solution because

11 1|t 0o o0
4= -1 3|=)1 =2 2 :‘
13 - 2 =2

-2 2 ‘
=0
-2
Solving the first two equations of the system, we have
2x,+4x,=0 (adding (I) and (II))
= X, =-2X,
and 2x,-2x,=0 (subtracting (II) from (I))
= X, =X,
Putting x, = -2x, and x, = x, in (III), we see that (-2x,) + 3(x,) — x,= 0, which shows that the
equation (I), (II) and (III) are satisfied by
x, =—-2t,x,=tand x, =t for any real value of t.
Thus the system consisting of (I), (II) and (I1T) has infinitely many solutions. But the system

version: 1.1
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x+x,+x;, =0
x,—x,+3x, =0 has only the trivial solution,
x, +3x,-2x; =0

because in this case

Lt po o
4=l -1 3=t 2 2 :‘
1 3 =2/ |1 2 -3

Solving the first two equations of the above system, we get x, = -2x, and x, = x,. Putting
x, =—2x, and x, = x, in the expression.
x, + 3x, - 2x,, we have - 2x, + 3(x,) - 2x, = - x,, that is,
the third equation is not satisfied by putting x, = -2x, and x, = x, but it is satisfied only if x, =
0. Thus the above system has only the trivial solution.

3.11.2 Non-Homogeneous Linear Equations

Now we will solve the systems of non-homogeneous linear equations with help of the
following methods.

i) Using matrices, thatis, AX=B= X=A"B.
i) Using echelon and reduced echelon forms
iii) Using Cramer's rule.

X =2x,+x;, —= 4
Example 1: Use matrices to solve the system 2x, —3x, +2x-= 6

2x, +2x,+x, =5

Solution: The matrix form of the given system is

1 =2 1[x] [-4
2 3 2Hx|=| 6
2 2 1| x| |5

version: 1.1
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or AX=B (i) Example 2: Solve the system;
1 -2 1 X, —4
where 4=/2 3=2|X |x=sandB | 6 X, +3x, +2x, =3
2 2 1 X, 5 4x, +5x, —=3xy-= 3¢,
1 =2 1] 1 =21 3x, —2x, +17x, =42
As [4|=2 -3 2/=/0 1 0 ByR, ()R R
> 2 1l b 2 1 by reducing its augmented matrix to the echelon form and the reduced echelon form.
:(_l)mi 1‘:(1_2):_1 thatis, Solution: The augmented matrix of the given system is
|A| # 0, so the inverse of A exists and (i) can be written as 1 3 2 : 3
X=A'B (ii) 4 5 -3 : -3
Now we find adj A. 3 =2 17 : 42
We reduce the above matrix by applying elementary row operations, that is,
-7 2 10
A = FA, FA4, 164, 4
Since ['j:|><:4 -1 —6’( _ _ _ 1 3 2 : 3 1 3 2 3
3x3 _1 O 1 Aiz = 1?7423— :6,A31 —1,A32 O,A33 1 : : ByR2+(_4)Rl _)R;
4 5 3 : 3|RI0 -7 -11 : -15 iR DR s R
7 4 - 3 017 4| o 1111 o33 | MRFEIRSK
So adjA=12 -1 0
10 -6 1 I 3 2 3
1 74 7 4 RO —-11 11 33 |By R, <> R,
and A—I:madezi 2 L o0l|= 2 1 o0 0 -7 -1l = -5
10 -6 1 -10 6 -1 . _
o 32 3 13 2 : 3
X, —4 7 4 1][-4] [-28+24+5 RO 1 -1 i -3 By(-ll—ljzeﬁzeggo 1 -1 i =3 |ByR+7R, >R,
Thus |x, |=4"|-6|=| 2 1 0| -6|=| 8-6+0 |.ie, 0 -7 —11 i -15] 0 0 —18 i 36
X, | 5] |-10 6 ~-1]| 5] | 40-36-5 )
3 2 3 |
_x1_ | B 0 1 -1 -3 BYE—QJ]% —)R3,
x, |=| 2 0 1 2
6] L The equivalent system in the (row) echelon form is

H_encex1:1, x,=2 and x,=-1.

version: 1.1 version: 1.1
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x, +3x,+2x,=3
X,—x;—= 3
x, =2
Substituting x, = 2 in the second equation gives: x, -2 =-3 = x, = -1
Putting x, = -1 and x, = 2 in the first equation, we have
X, +3(-1N+22)=3=>x,=3+3-4=2,
Thus the solutionisx, =2, x,=-1and x, =2

1 3 2 : 3
Now we reduce the matrix [0 1 -1 -3 | to reduced (row) echelon form, i.e.,
0 0 -1 : 2
1 3 2 3 1 0 5 : 12
01 -1 : =3|Rl0 1 -1 3| ByR+(-3)R,>R
0 0 1 2 0O 0 1 : 2
10 ,
Rlo 1 . By R, +(—5)R, > R|
0 0 1 andR, +1.R, > R,

The equivalent system in the reduced (row) echelon form is

x1=2
x2=—1
xX,= 2

3
which is the solution o f the given system.

3.12 Cramer'’s Rule

Consider the system of equations,

a, X, +a,X, + a;x; = b
Ay, X, + Ay X, + Ay X; = b, (1)

Ay X, + A3 X, + Ay X; = by

version: 1.1
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These are three linear equations in three variables x,, x,, x, with coefficients and constant

terms in the real field R. We write the above system of equations in matrix form

as: AX=B (2)
X, b,

where A=[a;] X =tx, and B |b
X, b,

We know that
the matrix equation (2) can be written as: X=A"'B (if A" exists)

L1

We have already proved that 4 = |A|ade and

4, 4, A4,
adj A :|:Az‘,j:|3x3 =4, A, 4y = ( Az‘,j Aji)
4, A, Ay
X 1 4, 4, 4| b 1 A,\b, + Ay,b, + 4;b,
Thus X | = m Alz Azz A32 bz g Ailibl Az"z'bz A32b3
X3 Ay Ay Ay || b Apsb, + Ay3b, + Assb,
A,b + A,,b, + 4, b
|4
X
y. |= A,b + 4,,b, + 4y,b,
2 4]
X3
Asb, + A,3b, + As3b,
i 4] |
b a, a;
b, a, ay;
Hence x, _bd by by B 4w oy (i)

4] 14

version: 1.1
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X _bdy, +b, 4y, +bi4y, |4y by, ay (ii)
2 ¥ ]
a, a, b

X ::[71A13+b2A23+b3A33 a, ay b (iii)
3 4 4

The method of solving the system with the help of results (i), (ii) and (iii) is often referred to
as Cramer’s Rule.

3x,+x,—x; =—4
Example 3: Use Crammer's rule to solve the system. x, +x, —2x, =—4

—x, +2x,—x; =1

31 -1
Solution: Here [4]=|1 1 -2|=3(-1+4)-1.(-1-2)-1(2+1)
-1 2 -1
=9+3-3=9
-4 1 -1
-4 1 =2
<o x]:_l ;-1 —4(—1+4)—1(4;+2)—1(—8—1)
_-12-649_ -9 _,
=5 "
3 4 -1
1 -4 =2
-1 1 =1 3(4+2)+4(-1-2)-1(1-4)
S 9

_18-1243 9
9 9

version: 1.1
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301 -4
11 -4
Sl 2 1] 3(1+8)-1(1-4)-(2+1)
BT 9
_2743-12 18
9 9

Exercise 3.5

1. Solve the following systems of linear equations by Cramer’s rule.

2x+2y+z=3 2x,—x,+x,=5 2x,—x, +x, =8
) 3x-2y-2z=1 i) 4x, +2x,+3x,=8 i) x +2x,+2x,=6
Sx+y-3z=2 3x,—4x,—x;=3 X —2x,—x;=1

2. Use matrices to solve the following systems:

x=2y+z=-1 2x,+x,+3x,=3 x+y=2
i) 3x+y-2z=4 i) x+x,-2x,=0 i)  2x—-z=1
y—z=1 =3x, —x, +2x, =—4 2y—-3z=-1

3. Solve the following systems by reducing their augmented matrices

to the echelon form and the reduced echelon forms.
X —2x,-2x%=1 X+2y+z=2 X +4x,+2x,=2
) 2x,+3x,+x,=1; i) 2x+y+2z=-1 i) 2x,+x,—2x,=9

5x,—4x, —3x; =1 2x+3y—-z=9 3x,+2x, —2x, =12

4. Solve the following systems of homogeneous linear equations.

x+2y-2z=0 x, +4x,+2x,=0 X, —2x,—x,=0

) 2x+y+5z=0 i) 2x,+x,-3x,=0 i)  x,+x,+5x,=0

5x+4y+8z=0 3x,+2x,—4x,=0 2x,—x, +4x,=0

version: 1.1
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5. Find the value of 4 for which the following systems have non-trivial solutions. Also solve
the system for the value of 4.

xX+y+z=0 X, +4x, +Ax, =0
i) 2x+y—Az=0 i) 2x,+x,-3x,=0
x+2y-2z=0 3x,+ Ax, —4x,=0

6. Find the value of 1 for which the following system does not possessa unique solution.
Also solve the system for the value of 1.

X, +4x, + Ax; =2
2x, +x,—2x, =11
3x,+2x, —2x,=16

version: 1.1
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4.1 Introduction

A quadratic equation in x is an equation that can be written in the form ax? + bx + ¢ = 0;

where a, b and c are real numbers and
az0.

Another name for a quadratic equation in x is 2nd Degree Polynomial in x.

The following equations are the quadratic equations:

i) x> —-7x+10=0; =1, b= — c=10
i) 6x’+x—-15=0; a=6,b=1, c=-15
i) 4x>+5x+3=0; a=4, b=5, c=3
iv) 3x°-x=0; a=3, b=-1, «¢=0
v)  x?*=4; a=1, b=0, c=-4

4.1.1 Solution of Quadratic Equations

There are three basic techniques for solving a quadratic equation:

i) by factorization.

i) by completing squares, extracting square roots.

iii) by applying the quadratic formula.

By Factorization: It involves factoring the polynomial ax?+ bx + .
It makes use of the fact thatifab =0, thena=0o0r b =0.
For example, if (x—2) (x—4) =0, then eitherx-2=0 or x-4=0.

Example 1: Solve the equation x> — 7x + 10 = 0 by factorization.

Solution: x¥*-7x+10 =0
= (x—2)(x-5) =0

either x-2 =0 = x=2

or x—5 =0 =>x=5

the given equation has two solutions: 2 and 5

solution set = {2, 5}

2and 5arerootsof x?-7x+10=0

@

version: 1.1
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By Completing Squares, then Extracting Square Roots:

Sometimes, the quadratic polynomials are not easily factorable.
For example, consider x> + 4x —437 = 0.

It is difficult to make factors of x? + 4x — 437. In such a case the factorization and hence
the solution of quadratic equation can be found by the method of completing the
square and extracting square roots.

Example 2: Solve the equation x?+ 4x — 437 = 0 by completing the squares.
Solution : x?+4x—-437=0
= x +2(ijx=437
2
4 2
Add (Ej =(2)* to both sides

x? +4x + (2 = 437 + (2)
= (x+2)*=441

= x+2=%,/441 =+21
= x=%x21-2
x=19 orx=-23
Hence solution set = {- 23, 19}.

By Applying the Quadratic Formula:

Again there are some quadratic polynomials which are not factorable at all using
integral coefficients. In such a case we can always find the solution of a quadratic equation
ax?+bx+c = 0 by applying a formula known as quadratic formula. This formula is applicable
for every quadratic equation.

Derivation of the Quadratic Formula

Standard form of quadratic equation is

ax’+bx+c=0,a#0

Step 1. Divide the equation by a

b ¢
X +—x+—=0
a a

version: 1.1
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Step 2. Take constant term to the R.H.S.
b c
X hmxe= —1£4361  —1%19
12 12
Step 3. To complete the square on the L.H.S. add (;} to both sides. e xo —1+19 or x ~1-19
i i a L., = 12 =
, b BB 3 3 _5
X, x== or Hence soulation set ={5,?}
bY b -dac _ _
= x+Z Ry Example 4: Solve the 8x* -14x - 15 = 0 by using the quadratic formula.
2 J—
= X+—1= b — 4ac Solution: Comparing the given equation with ax? + bx + ¢ = 0, we get,
2a 2a
: a=8, b=-14,c=-15
N e L Nb -dac By the quadratic formula, we have
2a 2a
~b++b* —4ac . x_—bivb2—4ac
* e 2a - 2a
Hence the solution of the quadratic equation ax? + bx + ¢ = 0 is given by re ~(-14) £/(-14)* — 4(8)(-15)
2(8)
‘= —b++b* —4ac
N 2a _14£4676  14+26
which is called Quadratic Formula. 16 16
, 14 +26 5
either x= > x==
Example 3: Solve the equation 6x? + x— 15 = 0 by using the quadratic formula. 2
or =
Solution: Comparing the given equation with ax? +bx + ¢ = 0, we get,
a=6b=1c=-15 Hence solution set :{2, —E}
The solution is given by 2 4
J— 2 — -
x = DENVH —dac Exercise 4.1
2a
_-lE \/12 —4(6)(—15) Solve the following equations by factorization:
2(6) 1. 3x2+4x+1=0 2. x*+7x+12=0
3. 9x*-12x-5=0 4., x*—x=2
version: 1.1 version: 1.1
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5. x(x+7)=(02x-1)(x+4)

X x+1 5

6. —t+—==—;x%#-1,0
x+1 X 2

7. ! + 2 = / s x#—1,-2,-5
x+1 x+2 x+5

8. i b :a+b;x¢l,l
ax—1 bx-1 ab

Solve the following equations by completing the square:

9. x*-2x-899 =0 10. x?+4x-1085=0
11. x*+6x-567 =0 12. x*-3x-648=0
13. x*—x-1806 =0 14. 2x°+12x-110=0

Find roots of the following equations by using quadratic formula:

15. 5x°-13x+6=0 16. 4x*+7x-1=0
17. 15x?+ 2a0x-a?=0 18. 16x2+8x+1=0
19. (x-a)(x-b)+(x-b)(x-c)+(x-c)(x—a)=0

20. (a+bx*+(@+2b+c)x+b+c=0

4.2 Solution of Equations Reducible to the Quadratic Equation

There are certain types of equations, which do not look to be of degree 2, but they can
be reduced to the quadratic form. We shall discuss the solutions of such five types of the
equations one by one.

TypeI: The equations of the form:ax>"+ bx"+c=0; a#0
Put x" = y and get the given equation reduced to quadratic equation in y.

version: 1.1
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1 1

Example 1: Solve the equation: x2 —x* —-6=0.
1 1
Solution This given equation can be written as (x*)* —x* -6=0

1

Let x*=y

The given equation becomes

y>—y—-6 =0
= (y-3)(y+2)=0
= y=3 or y =-2
x%:?, xiz—Z
= x=3) = x =(=2)*
= x=8I1 = x =16

Hence solution set is {16, 81}.

Type II: The equation of the form: (x + a)(x + b)(x + ¢)(x + d) = k
wherea+b=c+d

Example 2: Solve (x — 7)(x — 3)(x + 1)(x + 5) — 1680 =0

Solution: (x—7)(x =3)x+1)(x+5)-1680 =0
=  [(x=7)x+5)I(x-3)(x+1)]-1680=0
=  (¥®*-2x-35)(x*-2x-3)-1680=0
Putting x? — 2x = y, the above equation becomes
(y—-35)y—-3)-1680=0
= y?-38y+105-1680=0
= y>-38y-1575=0

3811444 +6300 38++/7744

2 2

(by grouping)

SLy= (by quadratic formula)

 38+88
2

O,

version: 1.1
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= y=63
= x*-2x =63
= x*-2x —-63 =0

= x+7)x-9) =0

= x=-70rx=9

or

y=-25.
= x?—-2x =-25
—=x2-2x +25=0

2++44-100
SX=—

2

24496

2

_2+460  _1io 5
2

= Or

Hence Solution set = {—7,9,1+2\/€ i,1-2/6 i}

Type 111: Exponential Equations: Equations, in which the variable occurs in exponent, are
called exponential equations. The method of solving such equations is explained by the

following examples.

Example 3: Solve the equation: 2*—-3.2*2+32 =0

Solution: 2% -3.2%2+ 32 =0
= 22-3.2%2.2+32 =0
= 22-12.2*+32 =0
= y’—-12y+32 =0 (Putting 2*=y)
= (y -38)y —-4) =0
= y=328 or y=4
= 2=8 = 2*=4
= 2= 23 = 2Y=2?
= x =3 = x=2

Hence solution set = {2, 3}.

version: 1.1
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Example 4: Solve the equation: 4™ + 4 =10

Solution: Given that
47 + 4% =10
= 44+ 44 =10

Let 4x: y — 4—x — (4X)—1 — y—l — i

The given equation becomes
4

4y+=-10 =0
y

= 4y*-10y +4 =0
= 2y -5y+2 =0
5+25-4(2)(2) 59 543
4 202) 4 4
= y =2 or y:l
2
4 = 2 gl
2
— 22x_ 21
= 2x = = 2% = 2"
= 2x= -1
= _)(::l
2 =

Hence Solution set = {1 1}
2" 2

Type IV: Reciprocal Equations: An equation, which remains unchanged when x is replaced
by iscalled areciprocal equation. Insuch anequation the coefficients of the terms equidistant
from the beginning and end are equal in magnitude. The method of solving such equations

is explained through the following example:

O,

version: 1.1
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Example 5: Solve the equation
xX*—3x°+4x>-3x+1=0;

Solution: Given that:
xX*—3x3+4x2-3x+1=0

=

=

3 1

x2—3x+4——+—2=0
X X
(x2+%j—3(x+l)+4:0
X X
Let =

So, the equation (1) reduces to
y>-2-3y+4 =0

= Vy?-3y+2
= (y-2y-1
= y =2
= il

X
= x*-2x+1
= (x =1y
= (x=1)(x-1)
= x=1,1

=0
=0
or y=1
= Xx+—

(Dividing by x?)

=0 = x*-x+1=0

=0 =

=0

Hence Solution set

version: 1.1
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Exercise 4.2

Solve the following equations:

WoeoNUL Wea

10.

x*—6x2+8=0 2. x?2—10=3x"!
x°—9x+8=0 4, 8x—19x3-27=0
2 1
x> +8=6x° 6. (x+1) (x+ 2)(x+3)(x+4)=24

(x=1)x+5)x+8)x+2)—880=0
(x=5)x-7)x+6)(x+4)-504=0
(x—Dx-2)(x-—8)(x+5)+360=0
(x+ 1)(2x + 3)(2x + 5)(x + 3) =945

Hint: (x + 1) (2x + 5)(2x + 3)(x + 3) = 945

1.
12.
13.
14.
15.
16.
17.

19.

21.

23.

2x—=7)(x*-9)(2x+5)-91=0
(x?+ 6x + 8)(x*+ 14x + 48) = 105
(x*+ 6x—27)(x*— 2x—35) =385
4. 2% -92*+1=0

25+ 2*6_20=0

4*-3.223+ 128 =0

321-12.3*+81 =0 18.
2
xz+x—4+l+i2 =0 20. (x—lj +3(x+lj=0
X X X X
2x*—3x>—x*-3x+2=0 22, 2x*+3x3—4x*-3x+2=0

6x*—35x°+62x2—35x+6=0 24. .+ _¢2.10-2.1 o
2 4

X X

Type V: Radical Equations: Equations involving radical expressions of the variable are
called radical equations. To solve a radical equation, we first obtain an equation free from
radicals. Every solution of radical equation is also a solution of the radical-free equation but
the new equation have solutions that are not solutions of the original radical equation.

Such extra solutions (roots) are called extraneous roots. The method of the
solution of different types of radical equations is illustrated by means of the followings
examples:

()
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i)  The Equations of the form: I(ax?+bx )J+m~ax’ + bx +c =0

Example 1: Solve the equation

3x7+15x=20x* +5x+1=2

Solution :Let Vx*+5x+1=y
=  K+5x+1=y?
= xX+5x=y*-1
= 3x*+15x=3y*- 3
The given equation becomes 3y>—-3 -2y =2

= 3y>2y-5 =0
= (By-5(+1)=0
5

- V=3 or y=-1
=  Jx*+5x+1 :g = X +5x+1 = -1
=  x*+5x+1 =§ = xX+5x+1=1
= 9x?2+45x+9 =25 = x*+5x=0
= 9x*+45x-16 =0 = x(x+5)=0
= (Bx+16)3x-1)=0 x=0 or x=-5

1 16
X=— Ok X =

On checking, it is found that 0 and — 5 do not satisfy the given equation. Therefore 0

and -5 being extraneous roots cannot be included in solution set.
Hence solution set

ii) The Equation of the form: Jx+a++x+b=+x+c

(2)

version: 1.1
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Example 2: Solve the equation:

Solution: {/x+8 ++/x+3=+12x+13
Squaring both sides, we get

X+8+x+3+2Vx+8Vx+3=12x+13
= 2Ux+8Vx+3=10x+2

= Jx+8)(x+3)=5x+1
Squaring again, we have

x2+ 11x+ 24 =25x> + 10x + 1
= 24x?-x-23=0
= (24x+23)(x-1)=0

23
¥x= — or=x 1
24
On checking we find that _23 is an extraneous root. Hence solution set = {13}.
24
iii) The Equations of the form:
\/ax2+bx+c+\/px2+qx+r =\/lx2+mx+n
where ax? + bx+ ¢, px*> + gx+ r and Ix?> + mx + n have a common factor.
Example3: Solve the equation: v/x> +4x —21 + x> —x— 6 = V6x* — 5x -39
Solution: Consider that:
xX*>+4x-21 =  (x+7)(x—3)
xX>—x—6 = (x+2)(x-23)
6x> - 5x-39 = (6x+ 13)(x-3)
The given equation can be written as
J+T)(x=3) +/(x +2)(x = 3) = /(6x +13)(x - 3)
= r=3[VreT+dxr2-ox+13 =0
Either vx—3=0o0rvx+7 +J/x+2 —/6x+13 =0
version: 1.1
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Vx=3=0 =>x3=0=x=3
Now solve the equation Vx+7 +vx+2—/6x+13=0

\/x+7 +x/x+2:\/6x+13

j—
= x+T+x+2+2(x+7)(x+2) =6x+13
= 2J(x+7)(x+2)=4x+4
= VX +9x+14 =2x+2
= x?+9%+14= 4x?+8x+4
= 3x*-x-10=0
= (Bx +5x-2)=0
= x=—§,2
3

Thus possible roots are 3, 2, -3

5

(Squaring both sides)

(Squaring both sides again)

On verification, it is found that —% is an extraneous root. Hence solution set = {2, 3}

iv) The Equations of the form: Jax? +bx +c + \/pxz +gx+r=mx+n
where, (mx + n) is a factor of (ax? + bx + ¢) — (px* + gx + 1)

Example 4: Solve the equation: v3x> —7x—30 —y2x> = 7x—-5=x—-3

Solution: Let \3x>—7x—=30 = ¢ and V2x*—7x-5 = b

Now @°—-b°=(3x>-7x—-30)—-(2x>—-7x-15)

a’—b?=x*-25
The given equation can be written as:
a-b=x-5
(a+b)a—-b) (x+5)(x-3)
a—b x=5
= 0a+b=x+5
20 = 2x
= a=x

(i)
(ii)
[From (i) and (ii)]

(iii)
[From (ii) and (iii)]
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Solve the following equations:

1.
3
5
7.
8
9

10.
1.

12.

\/3x2 —T7x-30=x

=
=
=

=

3x°— 7x— 30 =x?

2x*-7x-30 =0

(2x+5)(x-6)=0
5

x=——,6
2

On checking, we find that 2 is an extraneous root.

Hence solution set={6}

3x7 +2x—3x*+2x—-1=3

\/2x+8+x/x+5:7

Jx+7 +Jx+2 =+6x+13

4,
6.

2.

Exercise 4.3

X ———T7=x-3y2x* =3x+2

V3x+4=2++2x-4

e +x+l-Jx+x-1=1

\/x2+2x—3 +\/x2+7x—8:\/5(x2+3x—4)

V2x2 =55 =3 +32x+1 =+2x> +25x +12

V3x2 —5x+2 +46x2 —11x+5 =+/5x> —9x + 4

(x+4)(x+1)=+x*+2x-15+3x+31

3x2 = 2x+9 +3x* —2x—4 =13

V5 +7x42 -4t + Tx+18 =x—4

4.3 Three Cube Roots of Unity

Let x be a cube root of unity

Lox =3 :(1);

=
=

x3=1

x3-1=0

()

version: 1.1



4. Quadratic Equations

elLearn.Punjab

= (x-1NDx*+x+1)=0
Either x-1=0=x=1
or x¥*+x+1=0

x_—li\/l—4 ~1+/-3

2 2

- xz_li\/gi('.'\/—_l=i)

2

Thus the three cube roots of unity are:

—1++/3i —1—+/3i
2 2

1, and

*By complex root we mean, a root containing non-zero imaginary part.

4.3.1 Properties of Cube Roots of Unity

i) Each complex cube root of unity is square of the other

Proof: (a) [—”Tﬁl}z: (=1 + (31 +2(-D(/3 1)

4
C1-3-23i  2-243i
4 4
4
S CY
2
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2

o (—1—\/&) _ {_(H;/?;‘)}

_ P+ (B + QM3

4
C1-342V3 24243
4 4
_ 2[—1+\/§ij
4
:—1+\/§i
2

Hence each complex cube root of unity is square of the other.

ii) The Sum of all the three cube roots of unity is zeroi.e. 1 +o+w’ =0
Proof: We know that cube roots of unity are

1 —1+\/§i and —1—\/51
2 2
Sum of all the three cube roots = 1+_1+2\/§l + _1_2\/51
_2-14W3i-1-43i 0
2 2

if co==_1+\/§l, then @ _1_2\/51

Hence sum of cube roots of unity =l+w+w’ =0

()
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iii) The product of all the three cube roots of unity is unity i.e., o =1

—1+\/§l and —1—2\/51 a)2

Proof: Let 5 =
) (—1%/5;’)[—1—@;’]
T.o.w™ =
2 2
(=)’ =3y
- 4
_1-(=3) 143
4 4
= w =1

Product of the complex cube roots of unity =’ =1.

iv) For any nez 0" is equivalent to one of the cube roots of unity.
With the help of the fact that @’ =1, we can easily reduce the higher exponent of ® to

its lower equivalent exponent.

eg o' = 0.0 = lo =o
o= 0.0 =10 =0
o = (o)) = (17 =1
o’ = (o)) = (1) =1
o’ = (o' = (1Y =1
o' = oo = (). =01V 0"=0"
o'=s oo = (). 0 =0
o’ = 0o = () .0=0

o?=(@)" = )*=1
Example 1: Prove that: (x’ + y’) = (x + »)(x + @y)(x + @)
Solution: ppyg- (x+ y)x+wy)x+o’y)
=@+ )X +(0+ 0" yx+0’y’]

=(x+ ) —xy+y)=x"+y (o =l,o+o" =-1}

version: 1.1
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Example 2: Prove that: = (—1++/-3)" +(=1-+/-3)* =-16

Solution: | HS=(—14+=3)"+(=1-+=3)’

1] 9]

_ 44 214 . —
Qo) +2a°) Lot 1+J_3:w
=160 + 160" 2
=16(w" + &) <
Co-l=N3
. 5 =w
:16[0)3. o+’ a)z]
=16(w+ o°) =t =1
=16(-1) o +ot-= 1

=-16=R.H.S

4.4 Four Fourth Roots of Unity

Let x be the fourth root of unity
x = =11 (1)‘1‘

= xt=1

= x'-1=0

= X =-DE*+1) =0

= X -l=0=>x"=1=x=%1

and ¥’ +1=0=>x"=-1= x=4i.

Hence four fourth roots of unity are:
+1,-1,+i,— i
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4.4.1 Properties of four Fourth Roots of Unity

We have found that the four fourth roots of unity are:
+1,-1,+i,— i
i)  Sum of all the four fourth roots of unity is zero
+1+ (D) +i+(-i)=0

ii) The real fourth roots of unity are additive inverses of each other
+1 and -1 are the real fourth roots of unity

and+1+(-1)=0=(-1)+1
iii) Both the complex/imaginary fourth roots of unity are conjugate of each other
iand —iare complex / imaginary fourth roots of unity, which
are obviously conjugates of each other.

iv) Product of all the fourth roots of unity is —1
Ix(-D)xix(—i)=-1
Exercise 4.4

1. Find the three cube roots of: 8, — 8, 27, -27, 64.

Evaluate:

i) (l+o-a0’) i) o +0”+1 i) (l+o-0’)1-0+a0’)

iv) [—_HFJJF[—_I_;S) V) (=1++4-3)" +(=1-3)
3. Show that:

) Xy =Gy -oy)(x-a’y)
i) X4V +2 -3xz=(x+y+2)x+oy+ o’ z)(x+ o’y +wz)

i) (1+o)(1+0”)1+0*)(1+a")...2n factors =1

Hint: l+o'=1+0’. 0o=1v0o=+0E & 1 &.&* E o

4. If wisarootofx?+x+1=0,show thatits other root is ®* and prove that ®* = 1.
5. Prove that complex cube roots of -1 are +V3i and 1=3 and hence prove that

2 2

({85

2 2

6. If o isa cube root of unity, form an equation whose roots are 2® and 2m?.
7. Find four fourth roots of 16, 81, 625.

8. Solve the following equations:

) 2x'-32=0 i) 3)°—243y=0

i) xX+x*+x+1=0 iv)  5x°—=5x=0

4.5 Polynomial Function:

A polynomial in x is an expression of the form

n n—l1 H
ax"+a, x" +..+a,x+a,, a, #0 (i)

where n is a non-negative integer and the coefficients a ,a, ,,....,a, and a, are real numbers. It

can be considered as a Polynomial function of x. The highest power of x in polynomial in
x are called the degree of the polynomial. So the expression (i), is a polynomial of degree n.

The polynomials x* —2x+3, 3x’ +2x* —5x + 4 are of degree 2 and 3 respectively.
Consider a polynomial; 3x’ —10x* +13x —6.

If we divide it by a linear factor x — 2 as shown below, we get a quotient x> —4x+5 and
aremainder 4.

version: 1.1
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3x* —4x+5

divisor — x — 2>3x3 —10x> +13x—6 <« dividend

3x’ —6x2

-+

—4x* +13x
—4x* + 8x
—+ —

5x — 6
5x — 10
-+

4 < remainder

Hence we can write: 3x’ —10x” +13x —6=(x—2)(3x* —4x +5) + 4

4.6 Theorems:

Remainder Theorem: If a polynomial flix) of degree n>1, nis non-negative integer is divided
by x — a till no x-term exists in the remainder, then f(a) is the remainder.

Proof: Suppose we divide a polynomial fix) by x — a. Then there exists a unique quotient g(x)
and a unique remainder R such that f{x) =(x - a)(gx)+ R (i)
Substituting x = a in equation (i), we get
fla) =(a-a)q(a) +R
= f(@)=R
Hence remainder = f(a)

Example 1: Find the remainder when the polynomial x* +4x”> —2x+5 is divided by x — 1.

Solution: Letflx)=x3+4x*-2x+5andx-a=x-1=a=1
Remainder = f{(1) (By remainder theorem)
=(12+4(1)2-2(1)+5
=1+4-2+5
=8
Example 2: Find the numerical value of k if the polynomial x* + kx> —7x+ 6 has a remainder
of — 4, when divided by x + 2.

Solution: Letfix)=x3+kx*-7x+6andx—a=x+ 2, we have, g =-2
Remainder = f-2) (By remainder theorem)

=(=2) +k(-2) = 7(-2) + 6

=-8+4k+14+6
=4k+12
Given that remainder = -4
4k +12=-4
= 4k =-16
= =-4

Factor Theorem: The polynomial x — a is a factor of the polynomial f(x) if and only if
f(a)=0i.e.,; (x—a)isafactorof f(x) ifandonlyifx=aisarootof the polynomial equation

f(x)=0.

Proof: Suppose g(x) is the quotient and R is the remainder when a polynomial f(x) is divided
by x — a, then by Remainder Theorem
f(x) =(x—a) gx) +R
Since f(a)=0 =R=0
f(x) = (x=a) gx)
(x—a) is a factor of flx).
Conversely, if (x—a) is a factor of flx), then
R= f(a)=0
which proves the theorem.

version: 1.1
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Example 3: Show that (x - 2) is a factor of x*—13x* +36.

Solution: Let f(x) =x*-13x"+36 andx—a=x-2=>a=2
Now f(2) = (2)* — 13(2)* + 36
=16-52+36
=0 =remainder
= (x—2)is a factor of x*—13x*+36

4.7 Synthetic Division

There is a nice shortcut method for long division of a

polynomial f(x) by a polynomial of the form x — a. This process of division is called
Synthetic Division.

To divide the polynomial px® + gx*+ cx+d byx—a

a |P 49 ¢ d “— first line
|l ) ] +<—— Second line

F 1/ 1/ 1
P «—— third line
Coefhclmts Df kRLI‘ﬂdII]dLI‘

quotient

Out Line of the Method:
i) Write down the coefficients of the dividend f(x) from left to right in decreasing
order of powers of x. Insert O for any missing terms.
i)  To the left of the first line, write a of the divisor (x—a).
iii)  Use the following patterns to write the second and third lines:
Vertical pattern (1) Add terms

Diagonal pattern (/) Multiply by a.

elLearn.Punjab

version: 1.1

Example 4: Use synthetic division to find the quotient and the
remainder when the polynomial x* -10x* —2x+4 is divided by x + 3.

Solution: Let fix) = x* — 10x* — 2x + 4
=x'+ 0x°—10x*—2x +4
and x—a=x+3=x—(-3) = x=-3
Dividend x* — 10x> —2x +4

311 0 -10 2 4 +— first line
-3 3 -3 +—— Second line

/’U'i v

1 <3 <1 1 [11 +—— third line

L Remainder

Quotient =x*—-3x%2—-x+1
Remainder =1

Example 5: If (x - 2) and (x + 2) are factors of x* —13x” +36 Using synthetic division, find the
other two factors.

Solution: Let flx) = x* — 13x* + 36
=x*+0x’—13x*—0x + 36
Here x—a=x-2= x=2andx—a=x+2=x—(-2)=> x=-2

By synthetic Division:

2 I 0 —-13 0 36
2 4 18 -36
211 2 -9 —18 U

-2 0 —— Remainder
I 0 —9‘ 0-—-f'

.. Quotient = x>+ 0x-9
=x2-9

version: 1.1
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=(x+ 3)(x-3)
-. Other two factors are (x + 3) and (x - 3).

Example 6: If x+1 and x — 2 are factors of x’ + px* + gx+2 . By use of synthetic division find
the values of p and q.

Solution: Here x—a=x+1=a=-1and x—a=x-2=>a=2

Let f(x) = x + px* +qgx+2
By Synthetic Division:

-1 |1 P q 2
-1 -p+l-g+p-1
2 |1 p-19-p+lfl-g+p

2 2 p+2 Remainder
1 p+l p+qg+3
Since x+1 and x -2 are the factors of f(x)
p-g+1=0 (i)
and p+q+3=0 (i)
Adding (i) & (ii)we get 2p+4=0 =>p=-2
from(i)-2-g+1=0 =>q=-

Example 7: By the use of synthetic division, solve the equation
x*=5x*+4=0 if -1 and 2 areits roots.

-1 1 0 -5 0 4
-1 1 4 -4
211 -1 4 4 Io
2 2 4 t——Rf::rrmindt::r
T 1 2 | —

Solution:  f(x)=x*"—-0x’-5x*4+0x +4

version: 1.1
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Depressed Equation:
xX*+x—-2=0
=x+2)(x-1)=0 =x=-20r x=1
Hence Solution set = {-2, -1, 1, 2}.

Exercise 4.5

Use the remainder theorem to find the remainder when the first polynomial is divided by
the second polynomial:

1. x*+3x+7, x+1 2. x*—x*+5x+4 , x-2
3. 3x*+4x*+x-5 , x+1 4. x*—-2x*+3x+3 , x-3

Use the factor theorem to determine if the first polynomial is a
factor of the second polynomial.

5. x-1,x*+4x-5 6. x-2, X+x*—-7x+1
7. ©+2,20+0—-40+7 8. x-0 x"—-a" wherenis a positive
integer

9. x+a0a, x"+0" wherenisan odd integer.

10. When x* +2x’ + kx* +3 is divided by x-2 the remainder is 1. Find the value of k.
11. When the polynomialx’ +2x* + kx + 4 is divided by x-2 the remainderis 14. Find the
value of k.

Use Synthetic division to show that x is the solution of the polynomial and use the
result to factorize the polynomial completely.

12. X -7x+6=0, x=2 13. x*—28x-48=0,—x= 4
14. 2x'+7x’—4x* -27x-18, x=2—~ x= 3

15. Use synthetic division to find the values of p and g if x + 1 and x — 2 are the factors of
the polynomial x* + px* +gx +6.

version: 1.1
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16. Find the values of a and b if -2 and 2 are the roots of the polynomial x* —4x* + ax+5.

4.8 Relations Between the Roots and the Coefficients of a
Quadratic Equation

Let o, 5 are the roots of ax’ +bx+c=0,a#0 such that

—b+b — ac :—b—\/b2—4ac

and
p 2a
. a+f _—b—ll—\/bz—4ac ~b—Ab* —4ac
' " 2a 2a
_—b+~b’'—4ac—b—~b'—4ac  2b b
2a 2a
~b+b* —4dac || -b—~b* —4ac
and af} = 5 5
a a

_(-b)’ - (Wb* - 4dac)’

B 4q*

b* —b? +4ac  4ac c

4a’ 4a* a

Sum of the roots = § —2 = __coctficient of x

a coefficient of x?

tant t
Product of the roots = p =< = _tonstant tefin

a coefficient of x?

The above results are helpful in expressing symmetric functions of the roots in terms
of the coefficients of the quadratic equations.

Example 1: If «, B are the roots of ax* +bx+c=0,a #0, find the values of

) a0y LB i) (a-pr

f «
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Solution: Since «,f are the roots of ax’ +bx+c=0
" oc+ﬂ:—2 and aﬂ=£
a a
) a+ B =(a+p)-2ap

bY c b* 2¢ b*-2ca
= —— —2 —_ :—2——: 2
a a a a a

& B+ (a+p) -3afa+p)

a afp aff
(_bj3_3c(_bj —b’ +3abc
~\ a a\ ¢ a’
c c
a a
B —b’ +3abc
- a‘c

i) (a-pB) =(a+p) —4apf
440
a a a a a

Example 2: Find the condition that one root of ax® +bx+c=0,a # 0 is square of the other.

Solution: As one root of ax’ +bx+c=0 is square of the other, let the roots be « and «’

Sum of roots a +a* = b (i)
a

Product of roots= a.a* =< =a*=% (ii)
a a
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Cubing both sides of (i), we get

b3
@ +a®+3aa’(a+a’)= -
a
3

= a+(@) +3a(a+ad= —
a

c (cjz c( b} b’
= — 4+ | 3 ——= —
a a a\ a a

= a‘c+ac’ —3abe= b’

(From (i), (ii))

4.9 Formation of an Equation Whose Roots are Given

(x—a)x—p)=0 hastheroots «a and g

= x'—(a+pB)x+af=0 hastheroots « and g.
For S =Sum of the roots and P = Product of the roots.

Example3:If « paretherootof ax’+bx+c=0 formthe equation whose roots are double
the roots of this equation.

Solution: - « and g aretherootof ax’+bx+c=0
a+f - = b and a,b’=£
a a

The new roots are 2« and 2 5.
Sum of new roots =2a +2 3
=2(a +f) =2
a

Product of new roots=2a .2 8 = 4af :ﬁ
a

Required equation is given by
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y2 —(Sum of roots) y + Product of roots = 0

= y+—y+— =0 =  ay’ +2by+4c=0

Exercise 4.6

1. If a paretherootof 3x’-2x+4 =0, find the values of

S S B i) ate g

1) a2+ﬂ2 i) ﬁ+a ) a +p

iv) o+p V) % + % vi) o -p°
a  p

2. If a paretherootofx’- px— p-c=0, prove that
(+a)1+ g)=1-c¢
3. Find the condition that one root of x>+ px+qg =0 is
i) double the other ii) square of the other
iii) additive inverse of the other
iv) multiplicative inverse of the other.
4. If the roots of the equation x°—px+qg =0 differ by unity, prove thatp2=4q + 1.

5. Find the condition that —

in signs.

+
x—a x-b

=5 may have roots equal in magnitude but opposite

6. Iftherootsof px*+gx+q =0 are a and gthen prove that \/%+\/E+\/£=O.
a \p

7. If a« , paretheroots of the equation ax?*+ bx + ¢ =0, form the equations whose roots
are
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vii) (a— B (a+B) viii) —%,—%
(04

8. If « , paretheroots of the 542 — x — 2 =0, form the equation whose roots are

iandé.
a

9. If a, B arethe roots of the x> - 3x + 5 =0, form the equation whose roots are

1o andl_'B.
l+a 1+ 4

4.10 Nature of the roots of a quadratic equation

We know that the roots of the quadratic equation ax> + bx + ¢ = 0 are given by the

—b+b* —4dac

2a
We see that there are two possible values for x, as discriminated by the part of the

formula ++b* —4ac .

quadratic formula as: x=

The nature of the roots of an equation depends on the value of the expression b? —4ac,
which is called its Discriminant.

Case 1: If b>—4ac =0 then the roots will be —2i and —23 So, the
roots are real and repeated equal. ¢ ¢

Case 2:  If b>-4ac <0 then «/b*—4ac will be imaginary
So, the roots are complex / imaginary and distinct / unequal

Case 3:  If b>—4ac>0then vb*> —4ac will be real.
So, the roots are real and distinct / unequal.

However, If b2 - 4ac is a perfect square then v/b* —4ac will be rational, and so the

roots are rational, otherwise irrational.
version: 1.1
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Example 1: Discuss the nature of the roots of the following equations:

i) x*+2x+3 =0 i) 2x*+5x—-1 =0
i) 2x°-7x+3=0 iv)  9x*-12x+4=0

Solution:

i) Comparing x*+ 2x + 3 = 0 with ax? +bx + ¢ = 0, we have
a=1,b=2,c=3
Discriminant ( Disc) = b? — 4ac
=(22-4(1)3)=4-12=-8
= Disc <0
The roots are complex / imaginary and distinct / unequal.
i)  Comparing 2x* + 5x — 1 = 0 with ax? +bx + ¢ = 0, we have
a=2,b=5c=-1
Disc = b?—-4ac
=(5)7 - 4(2) (-1)
=25+8=33
—  Disc> 0 but not a perfect square.
The roots are irrational and unequal.
iii) Comparing 2x?>—7x+ 3 =0 with ax*+ bx + ¢ = 0 we have
a=2,b=-7,c=3
Disc = b?-4ac
=(=7-4(2)(3)
= 49-24=25=52
= Disc > 0 and a perfect square.
The roots are irrational and unequal.
iv)  Comparing 9x* — 12x +4 = 0 with ax*+ bx + ¢ = O,we have
a=9b=-12,c=4
Disc = b?-4ac
= (-12/-4(9) (4)
=144 -144=0
= Disc=0
The roots are real and equal.

=)
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Example 2: For what wvalues of m will the following equation have

equal root? (m+1Dx”+2(m+3)x+2m+3=0,m# -1

Solution: Comparing the given equation with ax?+ bx+ c=0
a=m+1,b=2(m+3),c=2m+3
Disc = b?-4ac
=[2(m+3) —4(m+1)2m+3)
=4(m* +6m+9) —4(2m* + 5m +3)

= 4m> 4m 24
The roots of the given equation will be equal, if Disc. =0 i.e,,
if —4m® +4m+24=0
= m —m—-6=0
= (m=-3)(m+2)=0=>m=3orm=-2

Hence if m = 3 or m = -2, the roots of the given equation will be equal.

Example 3:Show that the roots of the following equation are real
x—a)x-Db)+(x-b)x—c)+(x—c)x—a)=0
Also show that the roots will be equal onlyifa=b =c.

Solution: (x—a)x-b)+(x—b)x—c)+(x—c)(x—a)=0
= X' —ax—-bx+ab+x*—bx—cx+bc+x’—cx—ax+ac=0
= 3x’=2(a+b+c)x+ab+bc+ca=0
Disc = b?-4ac
=[2(a+b+c)] —4(3)ab +bc +ca)
=4(a’> +b* +c* +2ab+2bc +2ca —3ab —3bc —3ca)
=4(a* +b*> +c* —ab—bc—ca)
=2(2a> +2b* +2¢* —2ab — 2bc — 2ca)
=2[a’ +b* -2ab+b* +c* —2bc+c’ +a’ —2ca)
=2[(a—b) +(b—c)’ +(c—a)’]
= 2(Sum of three squares)
Thus the discriminant cannot be negative.

Hence the roots are real.

version: 1.1
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The roots will be equal, if the discriminant =0
This is possibleonlyifa-b=0,b-c=0,c—a=0i.e,ifa=b=c

Exercise 4.7

1.  Discuss the nature of the roots of the following equations:
) 4 +6x+1=0 i) X' —-5x+6=0
i) 2x*—5x+1=0 iv)  25x*-30x+9=0

2. Show that the roots of the following equations will be real:

i) xz—Z(m+ljx+3:O;m00
m

i) (b—c)x* +(c—a)x+(a-b)=0;a,b,ceQ
3. Show that the roots of the following equations will be rational:

) (g’ —px-g=0 i) px'—(p-q)x-q=0

4. For what values of m will the roots of the following equations be equal?
)] (m+Dx* +2m+3)x+m+8 =0
i) x?=2(143m)x+7(3+2m) =0

i) (A+m)x* =2(1+3mx+(1+8m) =0

5. Show that the roots of x* + (mx +c)’ =a’ will be equal, if ¢* =a’(1+m?)

6. Show that the roots of (mx + ¢)? = 4ax will be equal, if ¢ =£;m =0
m

2 2
7. Prove that x—2 + (mxb—tc)
a

=1 will have equal roots, if 2= a’m?+b% a#0,b#0

8. Show that the roots of the equation (a?— bc)x? + 2(b? — ca)x + ¢2— ab = 0 will be equal, if
either a®+ b?> + ¢ =3abcor b =0.

4.11 System of Two Equations Involving Two Variables

We have, so far, been solving quadratic equations in one variable. Now we shall be
solving the equations in two variables, when at least one of them is quadratic. To determine

()
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the value of two variables, we need a pair of equations.Such a pair of equations is called a Example 2: Solve the following equations:
system of simultaneous equations. Xty +4x=land X +(y-1)>=10
No general rule for the solution of such equations can be laid down except that some

how or the other, one of the variables is eliminated and the resulting equation in one variable Solution: The given system of equations is

is solved.
X+ +dx=1 (1)
Case I: One Linear Equation and one Quadratic Equation {xz +12=2y+1=10 (ii)
If one of the equations is linear, we can find the value of one variable in terms of the Subtraction gives,
other variable from linear equation. Substituting this value of one variable in the quadratic 4x+2y+8=0

equation, we can solve it. The procedure is illustrated through the following examples: = 2x+y+4=0

= y=-2x-4 (iii)

Example 1: Solve the system of equations: Putting the value of y in equation (i),

+y=7and x*—xy+y>=13
xX+y X—xy+y X+ (—2x—4)  +4x=1=x" +4x" +16x+16+4x =1

Solution: x+y=7 =x=7-y (i =  5x"+20x+15=0 = X +4x+3=0
Substituting the value of x in the equation x?— xy + y2 = 13 we have = (x*3)x+1)=0 =  x=-30r x=-1

7-vP-v(7-y)+y*=13
(7=yP=Y7=y)+y Putting x = -3 in (iii), we get; y=-2(-3)-4=6-4=2

49-14 = 1yt =1 _ e
- Ioldyry =Tyt y =13 Putting x =-1in (iii), we get;, y=-2(-1)-4=2-4=-2
= 3" -21y+36=0
= Y =Ty+12=0 Hence solution set = {(-3, 2),(-1, —2)}.
= ¥-3)x¥-4=0
= y=3 ory=4 Exercise 4.8
Putting y =3, in (i), we get x=7-3=4 Solve the following systems of equations:
Puttingy =4, in (i), we get =7-4=3 1 2x-y=4 2 -4xy-»"=6 2. x+y=5. x +2)°=17

’

Hence solution set = {(4, 3), (3, 4)}.

3. 3x+2y=7; 3x*=25+2y" 4. x+y=5;g+i:2,x¢0,y¢0

Xy
5. x+y—a+b ielo2 6. 3x+4y=25 S12_7
X y XY
7. (x-3) +y* =5, 2x=y+6
version: 1.1 version: 1.1
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8. x+3)+(@y-1)7"=5; x4+ +2x=9
9. X'+ (y+1)° =18; (x+2)Y+y*=21
10. x*+)y +6x=1; 4+ +2(x+y)=3
Case Il: Both the Equations are Quadratic in two Variables
The equations in this case are classified as:
i) Both the equations contain only x? and y?terms.
i) One of the equations is homogeneous in x and y.
iii) Both the equations are non-homogeneous.

The methods of solving these types of equations are explained through the following

examples:

2 2
. =2
Example 1: Solve the equations: * jy , >
2x°+3y" =6
Solution: Let x*=u and y’=v

By this substitution the given equations become

u+v=25 (i)

2u+3v=66 (ii)
Multiplying both sides of the equation (i) by 2, we have

2u+2v=>50 (iii)
Subtraction of (iii) from (ii) gives,

v=16

Putting the value of v in (i), we have
u+l16=25 = wu=9

=9 =>x=43and y’ =16 = y=+4
Hence solution set = {(£3, +4)}.

Example 2: Solve the equations: x> —3xy+2y* =0,2x" -3x+ )’ =24
Solution: The given equations are:

x*=3xp+2y° =0 (1)
2x* —3x+)y" =24 (11)

version: 1.1
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Equation x*>-3xy+2y’>=0 is homogeneous in x and y

= (x—y)x—2y)=0.

(Factorizing)

= x—-y=0 or x-2y=0

= X=) ...
Putting the value of x in (ii), we get

2y° -3y+y° =24
= y'-y-8=0

1+\/§

2

++/33

when y=

from (iii) le

2
1-33

2

when y =

1-33

¢ _
rom  (iii) x 5

= x=2y (iv)
Putting the value of x in (ii), we get

2(2y)* =3(2y)+y* =24
= 8)°—6y+y° =24

= 3)°-2y-8=0
= GBy+4Hr-2)=0

= =——=,2
Y73
4
when =——,
Y73
from (iv) xzz(—4j= g

when y=2,

from (iv) x=2(2)=4

Hence following is the solution set.

{(H@’H@’][l—@’l—@’]( 8 4j(4’2)}

2 2 2

Example 3: Solve the equations:

x2_y2 :5
4x* —3xy =18
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x2_y2 :5

Solution Given that ,
4x° -3xy =18

(1)
(ii)

We can get a homogeneous equation in x and y, if we get rid of the constants. For the
purpose, we multiply both sides of equation (i) by 18 and both sides of equation (ii) by 5 and

get

18x* —18y” =90
20x> —15xy =90

Subtraction gives,
2x* —15xy +18y* =0

= (x-6y)2x-3y)=0

= x—-6y=0or 2x-3y=0

Combining each of these equations with any one of the given equations, we can solve

them by the method used in the example 1.

or
x—6y=0
= x=6y
xP—y= from (i)
(6y) —y* =5
=  35)°=5
1
2
= ==
4 7

U

U
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1 2
=  y=tf—= = y =4
\/7 = y=12
1
when y=—, when y=2,
y \/7 Yy
when y=-2
when -y= %x 6(%j _Tg

. 6 1 6 1
H I =, — ——
ence Solution set {[\/7 7)( Nk \/7)’( 3, 2),(3,2)}

Exercise 4.9

Solve the following systems of Equations:

1. 2x* =6+3y° ; 3x*—5y" =7
2. 8x* =y’ ; x*+2y° =19
3. 2x" —8=5y’ ; x’—13—= 2y°
4, x*=5xy+6y>=0 ; x> +y* =45
5. 12x* —25xy +12y* =0 4x* +7y" =148
6. 12x" =1lxy+2y* =0  ; 2x% +7xy =060
7. x’ -y =16 ; xy=15

8. x*+xy=9 ; X' -y =2

0. Y =7 =2xy ; 2x° +3=xy
10. x*+)y*=5 ; xy =2

3
x=2(-2)=-3
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4.12 Problems on Quadratic Equations

We shall now proceed to solve the problems which, when expressed symbolically,
lead to quadratic equations in one or two variables.

In order to solve such problems, we must:

1)  Suppose the unknown quantities to be x or y etc.

2)  Translate the problem into symbols and form the equations satisfying the given

conditions.

Translation into symbolic expression is the main feature of solving problems leading to
equations. So, it is always helpful to proceed from concrete to abstract e.g. we may say that:

i) S5isgreaterthan3by2=5-3 i) xis greaterthan3 by x-3

iii) 5isgreaterthanyby5-y iv) xis greaterthanyby x-y.

The method of solving the problems will be illustrated through the following examples:

Example 1: Divide 12 into two parts such that the sum of their squares is greater than twice
their product by 4.

Solution: Suppose one part =x
The other part =12- «x

Sum of the squares of the parts = x* +(12-x)’
twice the product of the parts = 2(x)(12-x)

By the condition of the question,

x’+(12-x) -2x(12-x) =4
= X +144-24x+x" —24x+2x* =4
=  4x"—48x+140=0 = x —12x+35=0

= x-5x-7) =0 = x=50rx=7
If one partis 5, then the other part=12-5=7,
and if one partis 7, then the other part=12-7=5

version: 1.1
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Here both values of x are admissible.
Hence required parts are 5 and 7.

Example 2: Aman distributed Rs.1000 equally among destitutes of his street. Had there been
5 more destitutes each one would have received Rs. 10 less. Find the number of destitutes.

Solution: Suppose number of destitutes = x
Total sum = 1000 Rs.

000
X

. 1
Each desitute gets = Rs.

For 5 more destitutes, the number of destitutes would have
been x+ 5

1000
x+5

Each destitute would have got = Rs.

This sum would have been Rs. 10 less than the share of each destitute in the previous
case.

1000 _ 1000

= -10
x+5 X

= 1000 x=1000 (x + 5) — 10(x + 5)(x)

= x*+5x-500=0

= (x+25)(x-20)=0

= x=-250rx=20

The number of destitutes cannot be negative. So, -25 is not
admissible.

Hence the number of destitutes is 20.

Example 3: The length of a room is 3 meters greater than its breadth. If the
area of the room is 180 square meters, find length and the breadth of the room.
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Solution: Let the breadth of room = x meters

and the length of room = x + 3 meters
.. Area of the room = x (x + 3) square meters

By the condition of the question
x(x+3)=180 (i)

= x*+3x-180=0 (ii)

= (x+15)(x-12)=0
x ==-150rx=12

As breadth cannot be negative so x = -15 is not admissible
when x =12, wegetlength x+3=12+3=15
breadth of the room = 12 meter and length of the room = 15 meter

Example 4: Anumber consists of two digits whose product s 8. If the digits are interchanged,
the resulting number will exceed the original one by 18. Find the number.

Solution : Suppose tens digit = x
and units digit =y
The number =10x +y
By interchanging the digits, the new number = 10y + x

Product of the digits = xy
By the condition of question;

version: 1.1
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xy =8 (i)
and 10y +x=10x+y+ 18 (ii)
Solving (i) and (ii) ;we get
x=—-4o0rx =2
when x=-4,y=-2andwhenx=2,y=4
Rejecting negative values of the digits,
Tens digit =2
and Units digit = 4

Hence the required number = 24

Exercise 4.10

1.  The product of one less than a certain positive number and two less than three times
the number is 14. Find the number.

2. The sum of a positive number and its square is 380. Find the
number.

3. Divide 40 into two parts such that the sum of their squares is
greater than 2 times their product by 100.

4. The sum of a positive number and its reciprocal is % Find the

number.
5. A number exceeds its square root by 56. Find the number.
6. Find two consecutive numbers, whose product is 132.
(Hint: Suppose the numbers are x and x + 1).
7. The difference between the cubes of two  consecutive even

version: 1.1
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numbers is 296. Find them. from each corner and then folding the sides of the remaining piece. If the capacity of
(Hint: Let two consecutive even numbers be x and x + 2) the box is to be finish 128 c.dm, find the length of the side of the piece.

8. A farmer bought some sheep for Rs. 9000. If he had paid Rs. 100 less for each, he 20. A man invests Rs. 100,000 in two companies. His total profit is Rs.
would have got 3 sheep more for the same money. How many sheep did he buy, 3080. If he receives Rs. 1980 from one company and at the rate 1% more from the
when the rate in each case is uniform? other, find the amount of each investment.

9. A man sold his stock of eggs for Rs. 240. If he had 2 dozen more, he would have got
the same money by selling the whole for Rs. 0.50 per dozen cheaper. How many
dozen eggs did he sell?

10. A cyclist travelled 48 km at a wuniform speed. Had he travelled 2
km/hour slower, he would have taken 2 hours more to perform
the journey. How long did he take to cover 48 km?

11. The area of a rectangular field is 297 square meters. Had
it been 3 meters longer and one meter shorter, the area
would have been 3 square meters more.Find its length and breadth.

12. The length of a rectangular piece of  paper exceeds its
breadth by 5 cm. If a strip 0.5 cm wide be cut all around the piece of paper, the area of
the remaining part would be 500 square cms. Find its original dimensions.

13. A number consists of two digits whose product is 18. If the digits are interchanged, the
new number becomes 27 less than the original number. Find the number.

14. A number consists of two digits whose product is 14. If the digits are interchanged, the
resulting number will exceed the original number by 45. Find the number.

15. The area of a right triangle is 210 square meters. If its
hypoteneuse is 37 meters long. Find the Ilength of the base and
the altitude.

16. The area of a rectangle is 1680 square meters. If its diagonal
is 58 meters long, find the length and the breadth of the rectangle.

17. To do a piece of work, A takes 10 days more than B. Together
they finish the work in 12 days. How long would B take to finish it alone?

Hint: If some one takes x days to finish a work. The one day’s work will be l.

18. To «complete a job, A and B take 4 days working ¥ together.
A alone takes twice as long as B alone to finish the
same job. How Ilong would each one alone take to do the job?

19. An open box is to be made from a square piece of tin by cutting a piece 2 dm square

version: 1.1 version: 1.1
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5. Partial Fractions

5.1 Introduction

We have learnt in the previous classes how to add two or more rational fractions into
a single rational fraction. For example,

: 1 2 3x
) — =
x—=1 x+2 (x—D(x+2)
2
and i) 2 1 3 Sx“+5x-3

+ + =
x+1 (x+1)7 x=2 (x+1)*)(x-2)

In this chapter we shall learn how to reverse the order in (i) and (ii) that is to express
a single rational function as a sum of two or more single rational functions which are called
Partial Fractions.

Expressing a rational function as a sum of partial fractions is called Partial Fraction
Resolution. It is an extremely valuable tool in the study of calculus.

An open sentence formed by using the sign of equality ‘=" is called an equation. The
equations can be divided into the following two kinds:

Conditional equation: It is an equation in which two algebraic expressions are equal
for particular value/s of the variable e.g.,

a) 2x=3is a conditional equation and it is true only if x = %

b) x*+x-6=0is aconditional equation and it is true for x = 2, — 3 only.

Identity: It is an equation which holds good for all values of the variable e.g.,
a) (a+b)x=ax+ bxisanidentity and its two sides are equal for all values of x.
b) (x+3)(x+4)=x*+7x+12is also an identity which is true for all values of x.
For convenience, the symbol “=" shall be used both for equation and identity.

elLearn.Punjab
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5.2 Rational Fraction

We know that £ where p,q € Zand g # 0 is called a rational number.
q

P(x)

Similarly, the quotient of two polynomials T) where Q(x)#0, with no common
X
factors, is called a Rational Fraction. A rational fraction is of two types:

5.2.1 Proper Rational Fraction

P

(x)

A rational fraction is called a Proper Rational Fraction if the degree of the

polynomial P(x) in the numerator is less than the degree of the polynomial O(x) in the

2
denominator. For example, 270 g 93x

. x+1 x*+4 x —1
proper frations.

are proper rational fractions or

5.2.2 Improper Rational Fraction

P(x)

O(x)

A rational fraction

is called an Improper Rational Fraction if the degree of the
polynomial P(x) in the numerator is equal to or greater than the degree of the polynomial

Q(x) in the denominator.

x  (x=2)(x+1) x2—3an X=X +x+1
2x =3 (x=D(x+4) 3x+1 x*+5

For example,

are improper rational fractions or improper fractions.
Any improper rational fraction can be reduced by division to a mixed form, consisting
of the sum of a polynomial and a proper rational fraction.

version: 1.1
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We now discuss the following cases of partial fractions resolution.

For example,

3x+1 , . . . :
is an improper rational fraction. By long division we obtain ] P(x)
x—2 Case I: Resolution of

into partial fractions when Q(x) has only non-repeated

3x7 +1 13 O(x)

=3x+6+
x=2 x=2

3x2+1

x—2

i.e., an improper rational fraction has been reduced to the

sum o f a polynomial 3x + 6 and a proper rational fraction 5
x_

When a rational fraction is separated into partial fractions, the result is an identity; i.e.,
it is true for all values of the variable.

The evaluation of the coefficients of the partial fractions is based on the following
theorem:

“If two polynomials are equal for all values o fthe variable, then the polynomials have
same degree and the coefficients of like powers of the variable in both the polynomials
must be equal”.

For example,

If p®+qx*—ax+b=2x>-3x>-4x+5 Vx
thenp=2,g=-3,a=4and b=5.

P(x)
O(x)

5.3 Resolution of a Rational Fraction into Partial Fractions

P(x)

(x)

Following are the main points of resolving a rational fraction into partial fractions:

i) The degree of p(x) must be less than that of Q(x). If not, divide and work with
the remainder theorem.

i)  Clear the given equation of fractions.

iii)  Equate the coefficients of like terms (powers of x).

iv)  Solve the resulting equations for the coefficients.

version: 1.1
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linear factors:
The polynomial O(x) may be written as:

Ox)=(x-a)x-a,)..(x—a) where a#a,# ... #a

PO _ 4 A4 - isan identity.
Ox) x-a x-a r—da

n

Where, the coefficients A, A, ..., A_arenumbers to be found.
The method is explained by the following examples:

Example 1: Resolve, Tx+25 into Partial Fractions.
(x+3)(x+4)
Tx+25 A B

Solution: Suppose

= +
(x+3)(x+4) x+3 x+4

Multiplying both sides by (x + 3) (x + 4), we get
7x+25=A(x+4)+ B(x + 3)

= 7x+25=Ax+4A+ Bx + 3B

= 7x+25=(A+B)x+4A+3B

This is an identity in x.

So, equating the coefficients of like powers of x we have
7=A+B and 25= 4A+3B

Solving these equations, we get and [B=3].

Hence the partial fractions are: 4 - 3
x+3 x+4

Alternative Method:

Tx+25 A B
Suppose = +
(x+3)(x+4) x+3 x+4
= /x+25 = Alx+4)+B(x+3)

O
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As two sides of the identity are equal for all values of x,
let us putx=-3, and x=-4init.

Putting x = -3, we get -21+25 = A(-3+4)

= A=4
Putting x = -4, we get -28 +25=B(-4 + 3)
= B=3
4 3

Hence the partial fractions are: 3 +

x+4

2
Example 2: Resolve —> 12()x+13
(x—D(x"=5x+6)

into Partial Fractions.

Solution: The factor x2 — 5x + 6 in the denominator can be factorized and its factors are x — 3

and x — 2.

x> —10x+13 B x> —10x+13
(x=D(x*=5x+6) (x—D(x-2)(x-3)

x> —10x+13 A B C
Suppose = + +
x-Dx-2)(x-3) x-1 x-2 x-3

= X=10x+13=A(x-2)(x-3)+Bx—1)(x-3)+ Cx— 1)(x—2)
which is an identity in x.
Putting x = 1 in the identity, we get
(12-=10(1)+13=A(1-2)(1-3)+B(1 -1)(1-3)+ C(1-1)(1-2)
= 1-10+13=A(-1) (-2) + B(0) (- 2) + C(0) (-1)
4=2A |. A4=2
Putting x = 2 in the identity, we get
(2 -10(2) + 13 =A0)(2-3)+B(2-1)(2-3) + C(2 - 1)(0)
= 4-20+13=B(1)(-1)
=

-3=-B |.. B=3
Putting x = 3 in the identity, we get
(32-10(3)+13=A(3-2)0)+B3B-1)(0)+C(3-1)3-2)

= 9-30+13=C(2) (1)

version: 1.1
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= -8=2C | C= 4

Hence partial fractions are: 2 + 3 4

x—1 x—2_x—3

In the Example 2

a) the denominator of A is x — 1, and the value of A has been found by putting
x—1=0ie;x=1;

b) the denominator of B is x — 2, and the value of B has been found by putting
x—2=0ie.,x=2;and

c)

the denominator of Cis x — 3, and the value of C has been found by putting
x—3=0i.e.,x=3.

3 2
Example 3: Resolve 20 X —xo3 into Partial Fractions.
x(2x+3)(x—1)

Solution:

3 2
S et St ke A P improper fraction so, transform it into mixed from.
x(2x+3)(x-1)

Denominator

x(2x+3)(x-1)
253+ x? — 3x

Dividing 2x® + x> — x — 3 by 2x* + x> — 3x, we have
Quotient = 1 and Remainder = 2x -3

2 +x*—x-3 B 2x—-3 .

x(2x+3)(x—1) x(2x+3)(x-1)

version: 1.1
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2x-3

S
HPPOSE o 3=

X

B

c

2x+3

x—1

= 2x-3=A2x+3)(x-1)+B(x)(x—-1)+C(x)(2x + 3)

which is an identity in x.

Putting x = 0 in the identity, we get

Putting2x+3=0 = x = —% in the identity, we get (B = —%
Putting x—1=0= x=1inthe identity, we get C:—%

Hence partial fractions are: 1+l— 8 1

X

5(2x+3) S(x—1)

Exercise 5.1

Resolve the following into Partial Fractions:

1

2

x =1
3 2x+1
T (x=D(x+2)(x+3)
5. !
(x-D(2x-1)Bx-1)
3 2
7 6x 2+5x 7 3.
2x —x—1

9 (x—D(x=3)(x=5)
T (x=2)(x—4)(x-6)

x*+1
(x+1D(x-1)

3x2—4x-5

(x=2)(x* +7x +10)

X

(x—a)(x —b)(x—c)

2x7 +x* =5x+3

2x° + x? —3x

1

(1—ax)(1-5bx)(1—cx)

5. Partial Fractions elLearn.Punjab

x*+a’
(x2 +b2)(x2 + 6'2)()c2 + dz)

[Hint: Put x? = y to make factors of the denominator linear]

Case Il: when Q(x) has repeated linear factors:
If the polynomial has a factor (x—a)", n = 2 and n is a +ve integer, then may be written
as the following identity:

4,

P(x) _ 4

A

n

O(x)

where the coefficients A,, A

(x—a) (x_a2)2

1 Moreeses

+—
(x—a,)’

The method is explained by the following examples:

,A_are numbers to be found.

2

Example 1: Resolve, al

+—x_31 into partial fractions.

version: 1.1

(x+2)
2
Solution: SupposeLx_31 -4 + B -+ ¢ 3
(x+2) x+2 (x+2)y (x+2)
= X+x—T1=Ax+2?+Bx+2)+C (i)
= xX*+x-1=Ax* +4x+4)+B(x+2)+ C (i)

Putting x+ 2 =0n (i), we get
(2> +(-2)-1=A0)+B(0)+ C
= 1=C

Equating the coefficients of x2 and x in (ii), we get
and 1=4A+8B

= 1=4 + B = |B=-3

3 1

Hence the partial fractions are: - =+ 3
x+2 (x+2) (x+2)

Example 2: Resolve into Partial Fractions.

(x+1)2(x* —1)

version: 1.1

O,



5. Partial Fractions

elLearn.Punjab

5. Partial Fractions

elLearn.Punjab

Solution: Here denominator = (x + 1)* (x> - 1)
=@+ 1P+ ) x-1)=x+17x-1)

, 1 - 1
T2 =1 (x+DP(x-1)

A B C D
Suppose - = + + o+ .
(x=D(x+1) x=1 x+1 (x+1)° (x+1)
= 1=Ax+1P+Bx+1)(x—-1)+Cx—1)(x+1)+D(x—1) (i)

= 1T=AC+3x2+3x+1)+Bx>+x>*-x-1)+Cx*-1)+D(x—1)
= 1=A+Bx*+BA+B+(O)x*+(3A-B+D)x+(A-B-C-D) (ii)
Putting x—1=0=x=11in(i), we get,

1=A2) = |4 =

Puttingx+1=0=x=-1in (i), we get,

1=D(-1-1) = D= -=

Equating the coefficients of x®> and x? in (ii), we get

0=A+8B = B=-A = |B= ——

and O=3A+B+C:>O=%—%+C - |C = 1

Hence the partial fractions are:

1 1 1

1

| |0 —

8+ 4+2 1 1 1
X

I X+l (it  (x+1) 8(x=1) 8(x+1) A(x+1) 2(x+1)

version: 1.1

Exercise 5.2

Resolve the following into Partial Fractions:

1 2x* —3x+4 2 5x*—2x+3
) (x—1)° ) (x+2)
9 5 1

(x+2)*(x—1) (x=3)*(x+1)

1 x*

(x—1)2(x+1) (x=1’(x+1)

2x+1

4x

(x+1)(x—1)

2
X

(x=2)(x—1)°

x—1

(x—2)(x+1)°

2x*

(x* =D(x+1)°

(x+3)(x =1D)(x+2)

(x—3)(x+2)

Case lll: when Q(x) contains non-repeated irreducible quadratic factor
Definition: A quadratic, factor is irreducible if it cannot be written as the product of two
linear factors with real coefficients. For example, x> + x+ 1 and x? + 3 are irreducible quadratic

factors.

If the polynomial Q(x) contains non-repeated irreducible quadratic factor then
may be written as the identity having partial fractions of the form:

Ax+ B
ax’ +bx +c

The method is explained by the following examples:

3x-11
(x> +1)(x+3)

Example 1: Resolve

3x—-11 _AX+B+ C
(x2+1)(x+3) (x2+1) (x+3)

Solution: Suppose

where A and B the numbers to be found.

into Partial Fractions.

P(x)
Q(x)

()

version: 1.1
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= 3x—-11=Ax+B)(x+3)+(x*+ 1) (i)
= 3x-11=A+C)x*+ (BA+B)x+(3B+ () (ii)
Putting x+3=0 = x=-3Iin(i), we get

9-11=C9+1) =

Equating the coefficients of x* and x in (ii), we get

0=A+C =A=-C =

and 3=3A+B=B=3-3A =B=3-6 = |B=-3

2x—3_ 2
X +1 x+3

Hence the partial fraction are:

4x* + 8x

x*+2x7+9

Example 2: Resolve into Partial Fractions.

Solution: Here, denominator = x* + 2x> + 9 = (x* + 2x + 3) (x> — 2x + 3).

4x* +8x 4x* +8x

Xt 2x% 49 (P 42x+3) (3P —2x+3)

Suppose

4x° +8x B Ax+ B Cx+D
(xX* +2x+3)(x* —2x+3) X 4+2x+3 x°—2x+3

=  4x* + 8x=Ax+B)(x*—2x+3)+(Cx + D) (x*+ 2x + 3)
= 4x* + 8x=A+0O) P+ (-2A+B+2C+ D)x*
+(3A-2B+3C+2D)x+3B+3D )
which is an identity in x.
Equating the coefficients of x3, x%, x, x° in I, we have

0=A+C (i)

=-2A+B+2C+D (ii)
8=3A-2B+3C+ 2D (iii)
0=3B+2D (iv)

Solving (i), (ii), (iii) and (iv), we get

[4=1 [B=2] [c=-1] and

version: 1.1

(2)

x+2 —x-2
+

2

Hence the partial fractions are: 5
X" +2x+3 x"—-2x+3

Exercise 5.3

Resolve the following into Partial Fractions:

1 9x -7 2 1 3 3x+7
T (P +D(x+3) TP HD(x+) T (P +4)(x+3)
4 x> +15 x* 6 x> +1
T (P +2x45)(x-1) (x> +4)(x+2) T X+
- X +2x+2 1 9 x*
T3+ D) (x=1) (x—1)*(x* +2) R
x> —=2x+3
10- #
x +x +1

Case IV: when Q(x) has repeated irreducible quadratic factors

If the polynomial Q(x) contains a repeated irreducible quadratic factors
(x> +bx+c),n = 2andnis a +ve integer, then P may be written as the following
identity: Ox)

P(x) Ax + B A,x +B, Ax +B

0O(x) alxj + bx + ¢ (alzyé2 + bx + )} (a x> + bx +c)

where A, B, A, B,....A, B_are numbers to be found. The method is explained through the

following example:

version: 1.1
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2 4 3 2 4 3
Example 1: Resolve — ); into partial fractions. 5, X 2+ Ox +52x 6. 2? 32x 4x2
(x +1D)°(x-1) (x—D(x"+x+1) (x"+2)(x+1)
2
Solution: Let — 432 = A)§+B + C§+D2 £
(x +D)(x-1) x +1 (x*+1)" x-1
= A =Ax+B)(x*+ 1)x—1)+(Cx+D)x—1)+ E(x*+ 1) (i)
= 4dxX=A+Ex'+(-A+B)x*+(A-B+C+2E)x
+-A+B-C+D)x+ (-B-D+E) (ii)
Puttingx—1=0 = x=11in (i), we get
4=F1+1)? =
Equating the coefficients o f x4, x3, x2, x, in (ii), w e get
0=A+E = A=—E =
0=—A+B = B=A =
4=A-B+C+2F
= C(C=4-A+B-2F=4+1-1-2 =
0=-A+B-C+D
= D=A-B+C=-1+1+2=2 =
Hence partial fractions are: _f_l + 2f+22 b
x+1 (x+1)° x-1
Exercise 5.4
Resolve into Partial Fractions.
X +2x+2 2 x’
(x* +x+1) ) (x> + 1) (x=1)
2x-5 8x>
2 2 4. 2 2 2
(x"+2)(x-2) (x +1)"(1-x7)
version: 1.1 version: 1.1
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6.1 Introduction

Sequences also called Progressions, are used to represent ordered lists of numbers. As
the members of a sequence are in a definite order, so a correspondence can be established
by matching them one by one with the numbers 1, 2, 3, 4,..... For example, if the sequence
is1,4,7,10, ..., nth member, then such a correspondence can be set up as shown in the
diagram below:

Position the member of the sequence
1 >1

2 >

3 >7

4 >10

n > nth member

Thus a sequence is a function whose domain is a subset of the set of natural numbers. A
sequence is a special type of a function from a subset of N to R or C. Sometimes, the domain
of a sequence is taken to be a subset of the set {0, 1, 2, 3,...}, i.e., the set of non-negative
integers. If all members of a sequence are real numbers, then it is called a real sequence.

Sequences are usually named with letters g, b, ¢ etc., and n is used instead of x as a
variable. If a natural number n belongs to the domain of a sequence g, the corresponding
element in its range is denoted by a . For convenience, a special notation a_is adopted for
a(n)and the symbol{a }ora,,a, a,....a_,..is used to represent the sequence a. The elements
in the range of the sequence {a } are called its terms; that is, a, is the first term, a, the
second term and a, the nth term or the general term.

For example, the terms of the sequence {n + (-1)"} can be written by assigning to n, the
values 1, 2, 3 ,... If we denote the sequence by {b }, then

b.=n+(-1)"and we have
b,=1+(-1)=1-1=0
b,=2+(-1?=2+1=3

version: 1.1

@)

b,=3+(-1P=3-1=2
b,=4+(-1)y'=4+1=5etc
If the domain of a sequence is a finite set, then the sequence is called a finite sequence
otherwise, an infinite sequence.

Some examples of sequences are;
i) 1,4,9,..,121 i) 1,3,5,7,9,...,21 iy 1,2,4,..

iv) 1,3,7,15,31,. v) 1,6, 20,56, vip 14111
3579
The sequences (i) and (ii) are finite whereas the sequences (iii) to (vi) are infinite.

6.2 Types of sequences

If we are able to find a pattern from the given initial terms of a sequence, then we can
deduce a rule or formula for the terms of the sequence:

we can find any term of the given sequence giving corresponding value to n in the
nth / general term a_of a sequence.

Example 1: Write first two, 21st and 26th terms of the sequence whose general term is
(_1 )n+1_

Solution: Given thata = (-1)"". For getting required terms, we putn =1, 2, 21 and 26.

version: 1.1
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Example 2: Find the sequenceifa —a _,=n+1anda, =14

Solution: Puttingn=2,3,4in
a —-a . =n+1, wehave
a,-a,=3 (i)
a,-a,=4 (i)
a,-0,=5 (iii)
From (i), a,=a,-5
=14-5=9 (- a,=14)
From (i), a,=a,-4
=9-4=5 (-a,=9)
And from (i), 0, =a,-3
=5-3=2
Thus the sequenceiis 2, 5, 9, 14, 20,...

Exercise 6.1

1.  Write the first four terms of the following sequences, if

)] a,=2n-3 i) a,=(-1)"n’ i) &, = *(2n 3)
. n . 1
iv) a,=3n-5 V)  a, = vi)  a,=—
2n+1 2"
vil) a,—a, =n+2,a,=2 viii) a,=na, ,a =1
iX) ar=(n Da=,a 1 X) a __
" . " a+(n-1)d

2. Find the indicated terms of the following sequences;
, . 357
| 2,6,11,17,...a i 1,3,12,60,...a i L,—,—,—,...
) ' : o M Lyt

iv) 11-3,5-79,..a, v) 1,-3,5-7,9-11,..0,

version: 1.1
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3. Find the next two terms of the following sequences;
i) 7,9,12,16,... i) 1,3,7,15,31,...
i) -1,2,12,40,... iv) 1,-3,5-7,9-11...

6.3 Arithmetic Progression (A.P)

A sequence {a } is an Arithmetic Sequence or Arithmetic progression (A.P),ifa_—a_ . is
the same number foralln e Nand n>1.The differencea_—a_(n>1)i.e., the difference of two
consecutive terms of an A.P., is called the common difference and is usually denoted by d.

Rule for the nth term of an A.P..
We know thata —a_.=d(n>1),
which impliesa =a_ . +d (n>1)...... (i)
Putting n = 2, 3, 4,...in (i) we get
a,=a,+d=a,+(2-1)d
a,=a,+d=(a,+d)+d
=a,+2d=0a0,+ (3-1)d
a,=a,+d=(a,+2d)+d
=a,+3d=a,+ (4-1)d

Thus we conclude that

where a, is the first term of the sequence.
We have observed that

a,=a,+0d=a +(1-1)d

a,=a,+d=a,+(2-1)d

a,=a,+d=a, +(3-1)d

a,=a,+d=a +((4-1)d
Thusa,a,+d a, +2d,.. 0 +(n-1)d+..is a general arithmetic sequence, with a,, d as the
first term and common difference respectively.

version: 1.1
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Example 1: Find the general term and the eleventh term of the A.P. whose first term and the
common difference are 2 and -3 respectively. Also write its first four terms.

Solution: Here, a,=2,d=-3
We know thata_=a, +(n-1)d,
so a=2+MNn-1)(-3)=2-3n+3
or a =5-3n (i)
Thus the general term of the A.P. is 5 - 3n.
Putting n =11 in (i), we have
a,=5-3(11)
=5-33=-28
We can find a,, a,, a, by putting n = 2, 3, 4 in (i), that is,
a,=5-3(2)=-1
a,=5-3(3)=-4
a,=5-3(4)=-7
Hence the first four terms of the sequence are: 2, -1, -4, 7.

Example 2: If the 5th term of an A.P. is 13 and 17th termis 49, find a_and a...
Solution: Givena, =13 anda,, = 49.
Puttingn=5ina =a, +(n—-1)d, we have
a,=a,+(5-1),
a,=a, +4d
or 13=q,+4d (i)
Alsoa.=a,+(17-1)d
or 49=q, +16d
or 49 =(a,+4d)+12d
or 49=13+12d (by (i)
= 12d=36 =d=3
From (i), a,=13-4d=13-4(3)=1
Thus a,=1+(13-1)3=37and
a=1+(n-13=3n-2

Example 3: Find the number of terms in the A.P. if; a. =3, d =7 and a_=59.

Solution: Using a = a, + (n—1)d, we have
50=3+(n-1) X7 (~a =590, =3andd=7)
or 56=Nn-1)X7=0n-1)=8=n=9
Thus the terms in the A.P. are 9.

Example 4:If a_, =3n - 11, find the nth term of the sequence.

Solution: Puttingn=3,4,5ina_,=3n-11, we have
a,=3X3-11=-2
0,=3X4-11=1
0,=3X5-11=4
Thusa =a,+(n-1)d=-2+(n-1)X3 (.- a,=-2,andd=3)
=3n-5

Exercise 6.2

1.  Write the first four terms of the following arithmetic sequences, if

i) a, =5 and other three consecutive terms are 23, 26, 29

i) oa.=17anda,=37 i) 3a,=7a,anda, =33

If a_,=2n-5, find the nth term of the sequence.

If the 5th term of an A.P. is 16 and the 20th term is 46, what is its 12th term?
Find the 13th term of the sequence x, 1, 2 — x, 3 - 2x,...

Find the 18th term of the A.P. if its 6th term is 19 and the 9th term is 31.
Which term of the A.P. 5, 2, —1,... is —=85?

Which term of the A.P. -2, 4, 10,...is 148?

How many terms are there in the A.P. in which a, =11, 0 =68, d = 3?

If the nth term of the A.P.is3n -1, find the A.P.

Determine whether (i) =19, (ii) 2 are the terms of the A.P. 17, 13, 9, ... or not.
If I, m, n are the pth, gth and rth terms of an A.P., show that

)  Ug-nN+mir—p)+n(p-g)=0

i) pm-n)y+qgn-0+r(l-m)=0

VO NSO AEWN

-
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version: 1.1
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12. Find the nth term of the sequence,

BIBIGE

13. If l, 1 and 1 are in A.P., show that b= 2ac .
a b c a+c

14. |If l, 1 and 1 are in A.P, show that the common difference is a-c
a b c 2ac

6.4 Arithmetic Mean (A.M)

A number A is said to be the A.M. between the two numbersaand b ifa, A, b are in A.P.
If d is the common difference of this A.P.,,thenA-a=dand b-A=d.

Thus A-a=b-A

or 2A=a+b

In general ,we can say that a_is the A.M. betweena . and a

Example 1: Find three A.Ms between +2 and 3v2.

i.e.,

n+1'

Solution: Let A, A,, A,be three A.Ms between +2 and 3+2. Then
V2,4, 4,,4,,3J2 are in A.P.

Here a, =2,a, =32
Using a, =a,+(n-1)d, we get
a, =a,+(5-1)d

version: 1.1
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or 3J2=2+4d

=  3J2-2=4d
22 N2 1
- d: = =
4 2 2
1 2+1 3
Now A =a +d =2+ = =—,
o V22 2
AQ—A+d—3+1—4—2\/§
1 V22 2
1 4+1 5
A=A +d=232+——=""=
A NN
Therefore, i,zﬁ,i are three A.Ms between +2 and 3+/2.
V2 V2

6.4.1 n Arithmetic Means Between two given numbers

The n numbersA, A, A A are called n arithmetic means betweenaand bifa, A, A

‘|I 2’ 3""’

A,... A, barein AP,
Example 2: Find n A.Ms between a and b.
Solution: Let 4,,4,,4,,...,4, be n arithmetic means between g and b.

Then a,4,4,,4,,...,4,,b arein AP.inwhicha,=aanda_,, = b, so
b=a+((n+2)-1)d (where d is the common difference of the A.P.)

=a+(n+1)d
N d:b_a
n+1
ThUS A1:a+d:a+b_a:na+b
n+l  n+l
fg=a+2d=a+2(b—a]=(n—ba+2b
n+1 n+1
A3=a+3d=a+3(b_aj=(”—2)a+3b
n+l n+1

1o

O

version: 1.1
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b—a) a+nb
n+1 n+l1

An:a+nd:a+n[

Exercise 6.3

1. Find A.M. between
) 345 and 55 i) x—3 and x+5
i) 1-x+x and 1+x+x’
2. If5, 8 are two A.Ms between a and b, find a and b.
3. Find 6 A.Ms. between 2 and 5.

4. Find four A.Ms. between /2 and 12

J2
5. Insert 7 A.Ms. between 4 and 8.
6. Find three A.Ms between 3 and 11.
a' +b"

7.  Find nso that — T My be the A.M. between a and b.
a" +

8. Show that the sum of n A.Ms. between a and b is equal to n times their A.M.
6.5 Series

The sum of an indicated number of terms in a sequence is called a series. For example,
the sum of the first seven terms of the sequence {n?} is the series,

1+4+9+16+25+36+49,

The above series is also named as the 7th partial sum of the sequence {n?}. If the
number of terms in a series is finite, then the series is called a finite series, while a series
consisting of an unlimited number of terms is termed as an infinite series.

Sum of first n terms of an arithmetic series:

elLearn.Punjab

For any sequence {a }, we have,
S =a,ta,+ta,+..+a
If {a }isan A.P., then S can be written with usual notations as:

S =a,+(a,+d)+(a,+2d)+...+(a,-2d)+(a,—-d)+a, (i)

If we write the terms of the series in the reverse order, the sum of n terms remains the
same, that is,
S =a,+(a,—d)+(a,—2d)+...+(a, +2d)+(a,+d)+aq, (if)

n

Adding (i) and (ii), we get

28, =(a,+a,)+(a, +a,)+(a +a)+..+(a +a,)+(a +a,)+(a +a,)
=(a,+a,)+(a, +a,)+(a +a,)+..tonterm
= n(al + an)

:g%+%+m—nﬂ

(iii)

or Sn::g{2a1+(n—4)d]
Example 1: Find the 19th term and the partial sum of 19 terms of the arithmetic series:

2+Z+5+E+...
2 2

Solution: Here q, =2 and d =a, —q, =%
Using a, =a, +(n—1)d, we have,
3
@y =2+(19-1)7

:2+18[%j=2+27=29

version: 1.1
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Using S, =g(a1 +a,), we have,

19 19 589
S, =—(2+29)=—(31) ==
v =7 ) =7 0D ==

Example 2: Find the arithmetic series if its fifth term is 19 and S, =aq, +1.

Solution: Given that a, = 19, that is,
a,+4d =19
Using the other given condition, we have,

S4:g[2al+(4—l)d]=a9+1

or 4a,+6d=a, +8d+1
3a,-1=2d

Substitution 2d =3a, -1 in (i), gives

a, +2Q3a,-1)=19
or Ta,=21=a, =3
From (i), we have,

4d =19—-a,=19-3=16
= d =4
Thus the seriesis3+7 +11 +15+19 + ...

Example 3: How many terms of the series -9 -6 -3 + 0 + ... amount to 66?

Solution: Here g¢,=—9and d=3 as —-6—(-9)=3 and —-3—-(-6) =3.

Let S =66
Using S =g[2a1 +(n—1)d], we have,
66 =g[2(—9) +(n—1)3]
or 132=n[3n-21]= 44=n(n-"7)

(i)

(2)

version: 1.1
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74494176 7++/225

2 2

or nw—Tn-44=0 =n

+
S

But n cannot be negative in this case, so n = 11, that is, the sum of eleven terms amount to

66.

5.

Exercise 6.4

Find the sum of all the integral multiples of 3 between 4 and 97.
Sum the series

: " 3 5
) B+(-D+14+3+5+....+a i) 2 422+t .+a
( ) 16 \/5 \/5 13
i)  L11+1.414+1.71+....+q,,. iv) —8—3%+1+....+a11
V) (x—a)+(x+a)+(x+3a)+... to n terms.
Vi) ! + ! + ! + to n terms
I-vx 1-x 1+/x '
Vii) ! + ! + ! + to n terms
l+4x 1-x 1-/x '
How many terms of the series
)] =T+ (=5+(3)+... amount to 65?
ii) -7+ +(-D+... amount to 114?
Sum the series
) 3+5-7+9+11-13+15+17-19+... to 3n terms.
i) 1+4-7+10+13-16+19+22-25+... to 3n terms.

Find the sum of 20 terms of the series whose rth term is 3 +1.

()
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6. If S =n(2n-1), then find the series.
7. The ratio of the sums of n terms of two series in A.P. is 3n+2:n+1. Find the ratio of
their 8th terms.

8. IfS,,S,,S; are the sums of 2x,3n,5n terms of an A.P., show that S; =5(S, - S,).
9. Obtain the sum of all integers in the first 1000 integers which are neither divisible by 5

nor by 2.
10. S; and S, are the sums of the first eight and nine terms of an AP, find §, if
508, =63S, and=a, 2 (Hint == S S a,)

11. The sum of 9 terms of an A.P. is 171 and its eighth term is 31. Find the series.

12. The sum of SjandS, is 203 and §,-S5,=49,S, andS, being the
sums of the first 7 and 9 terms of an A.P. respectively. Determine the series.

13. S,andS, are the sums of the first 7 and 9 terms of an A.P.

respectively. If %:% and a, =20, find the series.
7
14. The sum of three numbersin an A.P. is 24 and their product is 440. Find the numbers.
15. Find four numbers in A.P. whose sum is 32 and the sum of whose squares is 276.
16. Find the five numbers in AP. whose sum is 25 and the sum of
whose squares is 135.
17. The sum of the 6th and 8th terms of an A.P. is 40 and the product of 4th and 7th term
is 220. Find the A.P.

18. If 4*,b> and ¢’ arein A.P., show that ! ! ! arein A.P.

b+c c+a a+b

6.6 Word Problems on A.p.

Example 1: Tickets for a certain show were printed bearing numbers from 1 to 100. Odd
number tickets were sold by receiving paisas equal to thrice of the number on the ticket
while even number tickets were issued by receiving paisas equal to twice of the number on
the ticket. How much amount was received by the issuing agency?

Solution: Let S, and S, be the amounts received for odd number and even number tickets

version: 1.1

respectively. Then
S, =3[1+3+5+...499] and §,=2[2+4+6+...+100]

Thus S, + S, :3><5—20(1+99)+2><?(2+100), [- There are 50 terms in each series]

= 7500 + 5100 = 12600
Hence the total amount received by the issuing agency = 12600 paisas = Rs.126

Example 2: A man repays his loan of Rs.1120 by paying Rs.15 in the first installment and
then increases the payment by Rs.10 every month. How long will it take to clear his loan?

Solution: Itis given thatthefirstinstallment(in Rs.)is 15and the monthlyincrease in payment
(in Rs.)is 10.
Here g, =15 and 4 =10

Let the time required (in months) to clear his loan be n. Then
S, =1120, that is,

1120 =2[2x 15+ (n—1)10] :g[30+(n ~1)10]

NS o

=—x10[3+(n—-1)]=5n(n+2)

or 224=n(n+2)=>n"+2n-224=0

24444896 _—2++/900
2 2
2430
2
=14,-16
But n can not be negative, so n = 14, that is, the time required to clear his loan is 14
months.

Example 3: A manufacturer of radio sets produced 625 units in the 4th year and 700 units
in the 7th year. Assuming that production uniformly increases by a fixed number every year,

()
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find
i) The production in the first year
ii)  The total production in 8 years
iii)  The production in the 11th year.

Solution: Let a, be the number of units produced in the first year and d be the uniform
increase in production every year. Then the sequence of products in the successive years is

a,a, +d,a +2d,...

By the given conditions, we have

a, =625 and a, 700, thatis,
a, +3d =625
and a, +6d = 700

Subtracting (I) from (II), we get
3d =75 =>d =25

) From (I), a, +3(25)=625= a,=625-75=550
Thus the production in the first year is 550 units.
i) S, :§[2x550+(8—1)25]
=4[1100+175]=4[1275]=5100

Thus the production in 8 years is 5100 units.
iii) a,=a, +(1-1)d

=550+10x25=550+250=800

Thus the production in the 11th year is 800 units.

6. Sequences and Series elLearn.Punjab
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Exercise 6.5

1. Aman deposits in a bank Rs. 10 in the first month; Rs. 15 in the second month; Rs. 20 in
the third month and so on. Find how much he will have deposited in the bank by the 9th
month.

2. 378 trees are planted in rows in the shape of an isosceles triangle, the numbers in
successive rows decreasing by one from the base to the top. How many trees are therein
the row which forms the base of the triangle?

3. A man borrows Rs. 1100 and agree to repay with a total interest of Rs. 230 in 14
installments, each installment being less than the preceding by Rs. 10. What should be
his first installment?

4. A clock strikes once when its hour hand is at one, twice when it is at two and so on. How
many times does the clock strike in twelve hours ?

5. A student saves Rs.12 at the end of the first week and goes on increasing his saving Rs.4
weekly. After how many weeks will he be able to save Rs.2100?

6. An object falling from rest, falls 9 meters during the first second, 27 meters during the
next second, 45 meters during the third second and so on.

i) How far will it fall during the fifth second?
i)  How far will it fall up to the fifth second?

7. An investor earned Rs.6000 for year 1980 and Rs. 12000 for year 1990 on the same
investment. If his earning have increased by the same amount each year, how much
income he has received from the investment over the past eleven years?

8. The sum of interior angles of polygon having sides 3,4,5,...etc. form an A.P. Find the sum
of the interior angles for a 16 sided polygon.

9. The prize money Rs. 60,000 will be distributed among the eight teams according to their
positions determined in the match-series. The award increases by the same amount for
each higher position. If the last place team is given Rs.4000, how much will be awarded to
the first place team?

10. An equilateral triangular base is filled by placing eight balls in the first row, 7 balls in
the second row and so on with one ball in the last row. After this base layer, second layer
is formed by placing 7 balls in its first row, 6 balls in its second row and so on with one
ball in its last row. Continuing this process, a pyramid of balls is formed with one ball on
top. How many balls are there in the pyramid?

version: 1.1
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6.7 Geometric Progression (G.P)

. . . . . a
A sequence {a_} is a geometric sequence or geometric progression if . n
n-1
. a

non-zero number for all ne N and n>1. The quotient —

n-1

is the same

is usually denoted by r and is

called common ratio of the G.P .It is Clear that r is the ratio of any term of the G.P.,, to

its predecessor. The common ratio r= % s defined only if a_, #0, i.e.,, no term of the

a

n—1

geometric sequence is zero.

Rule for nth term of a G.P.: Each term after the first term is an r multiple of its preceding

term. Thus we have,
a,=ar = alrz’1
2 3-1
a,=a,r=(aryr=ar =ar

_ _ 2 _ 3 _ 4-1
a,=a,;yr=(ar)r=ar =ar

- which is the general term of a G.P.

Example 1: Find the 5th term of the G.P., 3,6,12,...

Solution: Here a,=3, a,=6, a,=12, therefore, r :ﬁzgzz
a,
Using a,=ar"" forn 5,we have,
a;=ar’” =3.2""=32"=48
. : 8 —64
Example 2: Find a, if a, ==— and ¢, —— of a G.P.
27 729
Solution: To find @, we have to find g, and r.
Using a, =ar"’ (i)

version: 1.1
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a, =ar" =ar’, sO= a,r 57 (ii)
—64
And a =ar '=ar’, SO= ar® —— iii
7 1 1 1 729 ( )
Thus 4 0470 _ 8 or r° ( %) e alr3 r
a, 8/27 27 3 a, ar
2 .
= # = 3 (taking only real value of r)
Put P :—% in (ii), to obtain a, that is,

8 8
a| —|=— =>4q, = 1
27) 27

Now putting ¢, = kEand r % in (i), we get,

an:(—l)(—gjn_ =(—1)(—1)"-1.@T_ =(—1)"(§jn_ for n 1>

Example 3: If the numbers 1, 4 and 3 are added to there consecutive terms of G.P., the

resulting numbers are in A.P. Find the numbers if their sum is 13.

Solution: Let a,ar,ar’ be three consecutive numbers of the G.P. Then

a+ar+ar’ =13 =a(l+r+r’)=13 (i)

and a+1l,ar+4,ar> +3 arein A.P., according to the given condition.

(a+1)+(ar’ +3)
2

Thus ar+4=

=2ar+8=ar’ +a+4
= a(r’-2r+1)=4
= a(r’ +r+1)-3ar =4 ( r2—2r+1:(r2+r+1)—3r)

= 13-3ar=4  (wa(l+r+r’)=13)
or 3ar=13-4 = ar=3 (i)

version: 1.1
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Using a= E, (i) becomes
r

E(1+r+r2):13
r
or 3 -10r+3=0

_10£+/100-36 10+38

= r =
6 6

r=3 or r:l
3
If r=3then a=1 (using ar =3)
. | .
and if rzgthen a=9 (using ar=3)

Thus the numbers are 1,3,9 or 9,3,1

Exercise 6.6

1. Find the 5th term of the G.P.: 3,6,12,...

2.  Find the 11th term of the sequence, 1+1,2, i

3. Find the 12th term of 1+i,2i,-2 +2i,.... L+

4. Find the 11th term of the sequence, 1+i,2,2(1-1)

5. If an automobile depreciates in value 5% every year, at the end of 4 years what is the
value of the automobile purchased for Rs.12,000?

6.  Which term of the sequence:

7. Ifa, bcdarein G.P, prove that

i) a-b,b—-c,c—darein G.P.
i) a’-b? b*>-c? c®-d*arein G.P.
i) a*+b? b>+c? c2+d?*arein G.P.
8.  Show that the reciprocals of the terms of the geometric sequence a,, a,r?, a,r,... form
another geometric sequence.

6. Sequences and Series elLearn.Punjab
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9. Find the nth term of the geometric sequence if;ﬁzg and a, =g

a,
10. Find three, consecutive numbers in G.P whose sum is 26 and their product is 216.
11. If the sum of the four consecutive terms of a G.P is 80 and A.M of the second and the
fourth of them is 30. Find the terms.

12. If l,l and 1 are in G.P. show that the common ratio is i\/E

a b C C

13. If the numbers 1,4 and 3 are subtracted from three consecutive terms of an A.P., the
resulting numbers are in G.P. Find the numbers if their sum is 21.

14. |Ifthree consecutive numbersin A.P. areincreased by 1, 4, 15 respectively, the resulting
numbers are in G.P. Find the original numbers if their sum is 6.

6.8 Geometric Means

A number G is said to be a geometric mean (G.M.) between two numbers a and b if a,
G, b are in G.P. Therefore,

6.8.1 n Geometric Means Between two given numbers

The n numbers G,G,,G,,...,G, are called n geometric means between a and
b if a,G,G,,G;,....,G,,b arein G.P.

(n+2)-1

Thus we have, b = ar where r is the common ratio,

or ar™' =b

1/n+1
- rz(éj
a

b 1/n+1
Thus G, =ar= a(—j

a
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Example 1: Find the geometric mean between 4 and 16.

Solution: Here a =4, b = 16, therefore

G= Jab= x J4 16
= 64 8

Thus the geometric mean may be +8 or —8. Inserting each of two G.Ms. between 4 and
16, we have two geometric sequences 4, 8, 16 and 4, -8, 16. In the first case r =2 and in the
second caser=-2.

Example 2: Insert three G.Ms. between 2 and %
Solution: Let G,,G,,G, be three G.Ms between 2 and % . Therefore 2, GI,GZ,G3,% are in G.P.

Here a, =2, a, =landn=5

6. Sequences and Series
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=)

Using a, =ar"" we have,
4
a;, =ar" e, a, ar
Now substituting the values of q,

lz%r“ or r* l
4

Taking square root of (ii), we get,

rro=+

when r= 12,then:G 2l V%G, 2[

and q, in (i) we have

(i)

2 2
-1 1
when r= \/5,—thenG 2(\5) 2.6,
when r—ﬁ, then G, 2><\/§_\/§—i,G2=2( .
2 3
hen r=—., then G—=2 2 2| =L 1,G. 2| =L
o i 3 o 16 13

Example 3:1f g, b, cand d are in G.P. show thata+ b, b+ ¢, c+darein G.P.

Solution: Since a, b, c are in G.P therefore,

ac= b’
Also b, ¢, d are in G.P., so we have
bd = ¢*

(i)

(i)

=)
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Multiplying both sides, of (ii) by b, we get
b’d =bc> = acd =bc’ (- ac =b%)

If the sequence {a,} is a geometric sequence, then

S =a +ar+ar’+..ar"’ (i)
N o j aclli= bc . (i) Multiplying both sides of (i) by 1-r we get
o _
Now ad +be =be+be [ ad c] . A-r)S, =(1-r){a,+ar+ar’+..+ar""}
l.e., ad+bc =2bc (iv) !

Adding (i), (ii), and (iv), we have =(=nia(+r+ri+..+r)

— _ 2 n—1
ac+bd +ad +bc =b* +¢* +2bc =a{(l-r)d+r+r +..+7r"}

or  (a+b)c+(a+b)d=(b+c) =a, {(1+r+r+..+7r")=(r+r’+.+r")}

or  (a+b)(c+d)=(b+c) =q, (1-")

= a+bb+c,c+d arein G.P. a(l—r")
or S = ‘1 (r 1

—r

Exercise 6.7 .
For convenience we use:

1. Flnd G.M. betweg'n s :<a1(1—r ) . |r| )
i) -2and 8 i) —2i and 8i l1-r
2. Inserttwo G.Ms. between and S = (" —1) it ] 1
i) 1and 8 i) 2and 16 r—
3. Insertthree G.Ms. between
) 1and 16 ii) 2 and 32 2y
4. Insert four real geometric means between 3 and 96. Example 1: Find the sum of n terms of the geometric series if a, :(—3)(gj .
5. If both x and y are positive distinct real numbers, show that the geometric mean
between x and y is less than their airthmetic mean. Solution: We can write ( 3)(—] as:
6. For what value of n, ——— i — is the positive geometric mean between a and b? _3(2) (Ejn_l :( Ej (Ejn_l that is
a +b" 5 5 5 ! !
7. The A.M. of two positive integral numbers exceeds their (positive) G.M. by 2 and their [ 6)(2 "
sum is 20, find the numbers. "L s)\s
8. The A.M. between two numbers is 5 and their (positive) G.M. is 4. Find the numbers. 6\ ( 2\
|dentifying (—gj ng with a7"",
6.9 Sum of n terms of a Geometric Series y )
we have, ax= = and r = 1
For any sequence {a,}, we have > >
S =a+a,+a,+...+a,
version: 1.1 version: 1.1
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6\(5 2Y' 2Y'
=l =2 |1-]| =+ |=2)|1 | =
GG ) )
Example 2: The growth of a certain plant is 5% of its length monthly. When will the plant be
of 4.41 cm if its initial length is 4 cm?

Solution: Let the initial length be I cm.Then at the end of one month, the plant will be of

length 7 + 1><i :I+L:21.
100 20 20
21, 21 5
The length of the plant at the end of second month =—/+—Ix—
20 20 100

2
20 20 20

2 3
So, the sequence of lengths at the end of successive months is, %l,(zlj l,(zlj l....

20) (20
n—1 n
R R E RN O T
20 20 20 20 20

Thus 4.41:@—(1)) x4 (- initial length = 4 cm)

21" 441 441 (21 .. .
or | —| =——=—=|—| which givesn=2
20 4 400 |20

version: 1.1

6.10 The Infinite Geometric Series

Consider the series

n-1

a +ar+ar’+..+ar' +.,

G a,(1-r")

1-r

then S =a +ar+..+ar" (r= 1)

But we do not know how to add infinitely many terms of the series.
If S, > alimit as n > then the series is said to be convergent.
If S, increases indefinitely as n becomes very large then we say that S, does not exist
and the series is said to be divergent.

Case I: If |r|<1,
then r" can be made as small as we like by taking n sufficiently large, that is,

r" =0 as n— oo

Obviously S, —>1i when n— o
—-r

a,

In other words we can say that the series converges to the sum thatis,

Case IL: If |/|>1,

then " does not tend to zero when n— «

i.e., S, does not tend to a limit and the series does not converge
so the series is divergent.

For example, if we take a,=1,r=2,

then the series, will be
1+2+4+8+...
andwe have §, =1, =S,=3,5,=7,8,=15,....,§, =2"-i.e,S,,S,,S;,....,S, iS a sequence of ever

increasing numbers.

1-r

in this case

version: 1.1
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In other words we can say that S, increases indefinitely as n — «. Thus the series does
not converge.
Case III: If »=1, then the series becomes
a +a +a +a +..
and S, =na,. In this case S, does not tend to a limit when »— o and the series
does not converge.
Case IV: If r=-1, then the series becomes

a—a +a —a+a—a+..

g =4 —(=D"q
" 2
i.e., S, =a, if nis positive odd integer.
S =0 if nis positive even integer.
Thus S, does not tend to a definite number when » — . In such a case we say that the
series is oscillatory.

and

Example 3: Find the sum of the infinite G.P. 2,\/5,1,...

Solution: Here a, =2

r;&;ﬁzi and
a 2 J2
2 1
S=<— (_ 1)
oL V2

2
W2 222+ 44242
2o 2Dz 251'42&

Example 4: Convert the recurring decimal 2.23 into an equivalent common fraction (vulgur
fraction).

Solution: 2.23 = 2.232323 ...

6. Sequences and Series elLearn.Punjab
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=2+{23+.0023 +.000023 +...}

23 0023 1
=2 -
b 23 100
100
_,, 100x23 23
99 99
198423 221
9 99

Example 5: The sum of an infinite geometric series is half the sum of the squares of its

terms. If the sum of its first two terms is % find the series.

Solution: Let the series be
a, +ar+ar’+.. (i)
Then the series whose terms are the squares of the terms of the above series is

a’+alr’+a’rt+... (ii)
Let S, and S, be the sum of the series (i) and (ii) respectively. Then

S, = (iii)

[E—
|
[

a .
and S, = L (iv)

By the first given condition, we have.

1 a 1 a
S ==S, = =— 5
2 1-r 2\1-r

=a, =2(1+r) (v)

version: 1.1



6. Sequences and Series

elLearn.Punjab

6. Sequences and Series

elLearn.Punjab

From the other given condition, we get

9 9
a+ar=—=a(l+r)=—
1 1 2 1( ) 2

Substituting a, =2(1+r) in (vi), gives

21+ 7) (1+r)=%:>(1+r)2:%

:>1+r:J_rE
2
1 5
—>r=—,—=
22
For r:>i, r| > 1, so we cannot take rz—é.
2 2 2
. 1 1
if r=5,then a1=2(1+5)=3 [ a= 2(F 7))
Hence the series is 3+i+é+§+...
2 4 8
Example 6: If a=1-x+x>—x’+... x| <1
b=l+x+x>+x+.. |x|<1

show that 2ab = a + b.

Solution: a = (- r=—1x)
1-(-x)
1
or a=—=>=I1+x=—
I+ x a
1
and b=—=— rox
— ( )
= l—Jc:l

Adding (i) and (ii), we obtain

2 :1+%, which implies that
a

(Vi)

(i)

(i)

version: 1.1

10.

1.

2ab=a+b

Exercise 6.8

Find the sum of first 15 terms of the geometric sequence 1,
Sum to n terms, the series
i) 2+ .22+ .222 + ... i)
Sum to n terms the series
)  1+(a+b)+(a’+ab+b*)+(a’ +a’b+ab® +b*)+...

i)  r+(A+br+(0+k+E)r + .

11
o

3+33+333+..

Sum the series 2+(1—i)+(l}+....to 8 terms.
l

Find the sums of the following infinite geometric series:

1 1 . 1 1 1 9 3 2
—+—F... ) ==+t )  —+=+1+—+..
4 2 3

: 1
) —+
5 25 125

v) 2+1+05+.. V) 4422 +2+2 +1+...

vi) 0.1+0.05+0.025+...

Find vulgar fractions equivalent to the following recurring decimals.

i) 1.34 iy 0.7 i) 0.259

iv)  1.53 V) 0.159 vi)  1.147

Find the sum to infinity of the series; r+(1+k)r* +(1+k+k*)r +... rand k being proper
fractions.

If y:£+lx2+lx3 +... and if 0<x<2, then prove that x= 2y
247 g Ity

If y=2x+ix2 +£x3 +... and if O<x<§,then show that = 3y
3797 7 2 21+ y)

A ball is dropped from a height of 27 meters and it rebounds two-third of the distance
it falls. If it continues to fall in the same way what distance will it travel before coming
to rest?

What distance will a ball travel before coming to rest if it is dropped from a height of

version: 1.1
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75 meters and after each fall it rebounds % of the distance it fell?
12, If y=1+2x+4x" +8x" +...

i) Show that x:y_—l
2y

ii)  Find the interval in which the series is convergent.

2

13. Ify:1+£+x—+...
2 4

i) Show that x =2(y—_1]
y
ii)  Find the interval in which the serieis is convergent.
14. The sum of an infinite geometric series is 9 and the sum of the squares of its terms is

% . Find the series.

6.11 Word Problems on G.P.

Example 1: A man deposits in a bank Rs. 20 in the first year; Rs. 40 in the second year;
Rs. 80 in the third year and so on. Find the amount he will have deposited in the bank by the
seventh year.

Solution: The deposits in the succcessive yesrs are
20,40,80,... which is a geometric sequence with
a =20 and r 2
The sum of the seven terms of the above sequence is the total amount deposited in
the bank upto the seventh year, so we have to find S, that is,

202" 1) _ 202" -1)

the required depositin Rs.= S 1

=20(128-1)=20 X 127

Thus the amount deposited in the bank upto the seventh year is Rs. 2540.

Example 2: A person invests Rs.2000/- at 4% interest compounded annually. What the total
amount will he get after 5 years?

Solution: Let the principal amtount be P. Then

the interest for the first year = Px % = Px(.04)

The total amount at the end of the first year P+ Px(.04)=P(1+.04)
The interest for the second year =[P(1+0.4)x (.04)] and the total amount at the end of
second year =[P(1+0.4)]+[P(1+0.4)]x(0.4)

= P(1+.04)(1+.04) = P(1+.04)
Similarly the total amount at the end of third year =P(1 +.04)’
Thus the sequence for total amounts at the end of successive years is

P(1+.04), P(1+.04)%, P(1+.04)’,...
Theamount atthe end of the fifth year is the fifth term of the above gemoetric sequence,
that is

a, =[P(1+.04)](1+.04)" (- a;=ar"" and g, = P(1+.04))
=P(1+.04)°
As P =2000, so the required total amount in rupees = 2000 x (1+.04)

=2000x(1.216653) = 2433.31

Example 3: The population of a big town is 972405 at present and four years before it was
800,000. Find its rate of increase if it increased geometrically.

Solution: Let the rate of increase be r % annually. Then the sequence of population is

2
800,000,800,000| 1+—— |.800,000%| 1+——| ,...
100 100

and its fifth term = 972405.
In this case we have,

version: 1.1

= 2540

version: 1.1
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r )" . r
a, =a,|1 — vratieis |1 —
100 100

r

5-1
Thus 972405:800w00(1 ﬁj =(-a; 972405 and a, 800,000)

( y j“ 972405
or ] -

+ =
100) 800,000
. ) 194481 Y (21 21
l.e. 1+ = =11+—] =z =—=| =] +—m =—
100) 160000 100 20 100 20
r 21 1
= = _]=—
100 20 20
=r=5

Hence the rate of increase is 5%.
Exercise 6.9

1. Aman deposits in a bank Rs. 8 in the first year, Rs. 24 in the second year Rs.72 in the third
year and so on. Find the amount he will have deposited in the bank by the fifth year.

2. A man borrows Rs. 32760 without interest and agrees to repay the loan in installments,
each installment being twice the preceding one. Find the amount of the last installment,
if the amount of the first installment is Rs.8.

3. The population of a certain village is 62500. What will be its population after 3 years if it
increases geometrically at the rate of 4% annually?

4. The enrollment of a famous school doubled after every eight years from 1970 to 1994. If
the enrollment was 6000 in 1994, what was its enrollment in 19707

1
5. A singular cholera bacteria produces two complete bacteria in 5 hour. If we start with a

colony of a bacteria, how many bacteria will we have in n hours?

6. Joining the mid points of the sides of an equilateral triangle, an equilateral triangle having
half the perimeter of the original triangle is obtained. We form a sequence of nested
equilateral triangles in the manner described above Wi e original trianglg-hawRgr 1

6. Sequences and Series
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perimeter % . What will be the total perimeter of all the triangles formed in this way?

6.12 Harmonic Progression (H.P)

A sequence of numbers is called a Harmonic Sequence or Harmonic Progression if the

reciprocals of its terms are in arithmetic progression. The sequence 1,—,

sequence since their
reciprocals 1,3,5,7 are in A.P.

is a harmonic

Remember that the reciprocal of zero is not defined, so zero can not be the term of a

harmonic sequence.
The general form of a harmonic sequence is taken as:

i, ! ; ! whose nth term is ——
a, a+d a +2d a, +(n—-1)d
Example 1: Find the nth and 8th terms of H.P ; %%%

Solution: The reciprocals of the terms of the sequence,

are 2,5,8,...

oo | —

11
2’5
The numbers 2,5,8,... are AP, so
a=2andd=5-2=3.
Putting these values in a, =a,+(n—1)d, we have
a =2+n-1)3

=3n-1

Thus the nth term of the given sequence _ 1 3 1 1
n_

n

()

version: 1.1
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and substituting n =8 in 3 ! 1,we get the 8th term of the given H.P. which is 3 é =3
"

Alternatively, a, of the A.P. =a, +(8-1)d

+2 (B3 23

Thus the 8th term of the given H.P. :2%

Example 2: If the 4th term and 7th term of an H.P. are % and 2% respectively, find the
sequence.

Solution: Since the 4th term of the H.P.:% and its 7th term:%, therefore the 4th and 7th

terms of the corresponding A.P. are % and? respectively.

Now taking a,, the first term and d, the common difference of the corresponding A.P,
we have,

13

+3d =— i
a, 5 (i)
and a, +6d =% (i)

Subtracting (i) from (ii), gives

3d=2§—12=6:>d=2
2 2

From (i), we get

2 2 2
1 5
Thus a, of the A.P. al+d:5+2:§

and a,ofthe AP. a +2d =%+2(2)

version: 1.1

:l+4:2.
2 2

Hence the required H.P. is %,2,2,3,...
1 5913

6.12.1 Harmonic Mean : A number H is said to be the harmonic mean (H.M) between two
numbers a and b if a, H, b are in H.P.

Let a, b be the two numbers and H be their H.M. Then l, are in A.P.
a

1
b

1
72
1+17 b+a

b_ ab _a+b
2 2 2ab

therefore, 1 _a
H

For example, H.M. between 3 and 7 is

2x3x7 2x21 21
347 10 5

6.12.2 n Harmonic Means between two numbers

H,H,,H,....H, arecallednharmonicmeans(H.Ms)betweenaandbifa,H,,H,,H,,...H b
are in H.P. If we want to insert n H.Ms. between a and b, we first find n AMs. 4,,4,,....4,

between ! and % then take their reciprocals to get n H.Ms between a and b, that is,
a

A%’A%""’L will, be the required n H.Ms. between a and b.
1 2 n

Example 3: Find three harmonic means between % and %

Solution: Let 4,4,,4, be three A.Ms. between 5 and 17, that is, 5,4,,4,,4,,17 are in A.P.

elLearn.Punjab
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using a, =a,+(n—1)d, we get,

17=5+(5-1)d (. as=17and q, =5)

4d =12
= d=3
Thus 4, =5+3=8,4,=5+2(3)=11 and 4,=5+3(3)=14
11

112 are the required harmonic means.

Hence l
8

Example 4: Find n H.Ms between g and b

Solution: Let 4.4,,4,,....,4, be n AMs between 1 and %
a

Then l,Al,AZ,A3,....,An,% are in A.P.
a

using a, =a,+(n—-1)d , we get,

%— ! +(n+2-1)d

a

or nahd=t-togo_a?
b a ab(n 1)

Thus 4 =L+g=lyd=b _btD+(@-b)_ nbta
a a ab(n+l) ab(n+1) ab(n+1)

a a

A2:1+2d:1+2( a-b ]:b(n+l)+2(a—b) (n=1)b+2a
ab(n+1) ab(n+1) ab(n +1)

4, :l+3d:l+3
a a

a-b ) b(n+1)+3(a-b) (n—2)b+3a
ab(n+1) - ab(n+1) _ab(n +1)

A =l+nd=l+n£

n

a a

a—-b _b(n+1)-|in(a—b) Q+n:a
ab(n+1))  ab(n+1) ab(n+1)

Hence n H.Ms between a and b are:

ab(n+1) ab(n+1) ab(n+1) ab(n+1)
nb+a "(n-1)b+2a’ (n-2)b+3a’ "~ b+na

version: 1.1

6.13 Relations between Arithmetic, Geometric and Harmonic

Means

We know that for any two numbers a and b

2ab
a+b

a+b

A= ,G \/E and H

We first find AxH that s,

AxH :a+bx 2ab _ub
2 a+b
=G*

Thus A, G, H are in G.P. For example, if
=-1and b =5, then

TS, G =+/-1x5 = +:/5i

2
g 26DS5_-10 -5
—1+5 4 2

Atzzx%S:—s and G = (£+/51)* =5 =5

A

It follows that Ax H =G* and A, G, H are in G.P.

Now we show that 4> H for any two distinct positive real numbers.

AsH ifa+b> 2ab

2 a+b

or (a+b)* >4ab
or (a+b)—4ab>0=(a—-b)">0

version: 1.1
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which is true because a — b is a real number and the square of a real number is always
positive.
Also A> G if g, b are any two distinct positive real numbers.

A>GifaJ2rb>J_r\/E
or a+b¢2\/ﬁ>0

= (Na FP) >0

which is true because +a /b are non zero real numbers and the squares of real
numbers are always positive.
Now we prove that

)  A>G>Hifa,b are any two distinct positive real numbers and G =+/ab .

i)  A<G<Hifa,b are any two distinct negative real numbers and G =-+ab.
To prove (i) we first show that A> G, i.e.,

A>GifaJ2rb>\/E

—  (a-JbY>0

which is true (write the missing steps as given above)
ThusA>G (1)
Again G > H,

if Jab > 24
a+b

or a+b>2Jab

= a+b-2-Jalb >0

=  a-+b)Y>0

which is true since Va —+/b is a real number.

Thus G>H (2)

From (1) and (2), we have
A>G>H

version: 1.1

To prove (ii), we show that
A< G if

a42-b<_\/£

Let a =—-m and b = —n where m and n are positive real numbers. Then

PR JEmy=n)

2

m+n m+n
or — 5 <—mn= 5 >A/mn

= (Nm —/n)*>0
which is true, that is,
A< G

Similarly, we can prove that
G<H

Hence A<G< H

(See part(i))

Exercise 6.10
1.  Find the 9th term of the harmonic sequence

yeee i) —,—,—1,...

5

| —
|~

1
3’

2.  Find the 12th term of the following harmonic sequences

: I 11 . 1 21
1) — = i) ===,

258 396

3. Insert five harmonic means between the following given

numbers,
) _—Zandi i) landL

5 13 4 24

version: 1.1
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4.

10.

11.

12.

13.

14.

15.

16.

Insert four harmonic means between the following given numbers.

) landL i) Zandl i) 4 and 20
3 23 3 11

If the 7th and 10th terms of an H.P. are % and % respectively, find its 14th term.

The first term of an H.P. is —% and the fifth term is % Find its 9th term.

If 5 is the harmonic mean between 2 and b, find b.

If the numbers l, and !
k 2k+1 4k —1

n+l n+l

Find n so that < T may be H.M. between a and b.
a" +

are in harmonic sequence, find k.

If a>,b%> and c? are in A.P. show thata +b,c+aand b+ carein H.P.
The sum of the first and fifth term of the harmonic sequence is g if the first term is

%, find the sequence.

If A, G and H are the arithmetic, geometric and harmonic means between a and b
respectively, show that G2 = AH.

Find A, G, H and show that G2 = AH. if

i) a=%b 6 i) a=2i,b=4i i) a=9,b=4

Find A, G, H and verify that A> G > H (G > Q), if

i) a==.b=>
S 5

i) a=2,b =8
Find A, G, H and verify that A< G < H (G <0), if
) a=-%b 8 i) a=—,b=—

If the HM and AM. between two numbers are 4 and %
respectively, find the numbers.

elLearn.Punjab
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17. If the (positive) G.M. and H.M. between two numbers are 4 and ? find the numbers.
18. If the numbers %% and % are subtracted from the three consecutive terms

of a G.P., the resulting numbers are in H.P. Find the numbers if their product is % .

6.14 Sigma Notation (or Summation Notation)

The Greek letter Z(sigma) is used to denote sums of different types . For example the

notation ) a, is used to express the sum

i=m

+a, ,+

a,+a mi2 Tt 4y and the sum expression

m+1

1+ 3+5+...tonterms.

is written as ) (2k-1),

k=1
where (2k-1) is the kth term of the sum and k is called the index of summation. “1" and n
are called the lower limit and the upper limit of summation respectively. The sum of the first
n natural numbers, the sum of squares of the first n natural numbers and the sum of the
cubes of the first n natural numbers are expressed in sigma notation as:
14243 +..4n=> k
k=1

P+22 43+ 40’ =Dk
k=1

P+2+3+ 4+’ =)k
k=1

We evaluate Z[k”’ —(k—-1)"] for any positive integer m and shall use this result to find out
k=1

version: 1.1
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formulas for three expressions stated above. Taking summation of (B) on both sides from & =1 to n, we get
D" = (k=1)"]= (1" =0") + (2" =1") + (3" =2") ... STE - (k—1)']= (k% 3k +1)
k=1 k=k k1

Hm-1)"-(n-2)"]+[n" —(n—=1)"]=n"
n _- y 3 :3 n k2_3 n k
Le, D IK"—(k=1")=n" i.e., n ; kz; +n

If m=1 or 3Zk2=n3—n+32k
k= k1

:n(n+1)(n—1)+3><M

then Z":[(kl —(k=1)1=n"

n
1.€. Zl =n
k=1

:n(n+1)[n_1+i}:n(n+1)(2n+1)
2 2

Thus < K= n(n+1)(2n+1)
2

6.15 To Find the Formulae for the Sums 6
iii)  We know that (k—1)* =k* -4k’ + 6k —4k +1 and this identity can be written as: (@

. y ) . o k= (k1) = 4k* — 6k + 4k -1
) kzzllk i) kzzllk i) kzzllk Taking summation on both sides of (C), from k=1 to n, we get,
Taking summation on both sides of (A) from k =1 to n, we have k=+ k1

" p le., n4:4nk3—6nk2+4nk—n

YK —(k=1*1=>_(2k -1) kZ; kz; ;

= k1 ) or 4Zn:k3:n4+n+6zn:k2—4zn:k

k=1 == k1 k1

ie., n2=2Zn:k n «:>.1 n)
k=

k1

n(n+1)(2n+1) “ n(n+1)

=n(n+1)(n° —n+1)+6x 5

or 2Zk=n2+n
k=l =n(n+D)[n* —n+1+2n+1-2]

Thus Zk = n(n2+ D =n(n+1)(n* +n)=n(n+1).n(n+1)
k=1
i)  Consider the identity Thus Zn:k3 _[n(n+ D) :[H(er)}2
= (k=1) =3k -3k +1 (B) e 4 2
version: 1.1 version: 1.1
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Example 1: Find the sum of the series I’ +3° +5° +...to n terms

YA YA S o
k=1l = 2_ak1 = 2kl k1

Solution: 7, =(2k-1)’ (o 14+ (k= 2)2= 2k- 1) _n'mt)’ 3 a(+h@nxh 1 op(tD)
= 8> —12k> + 6k —1 4 2 6 2 2
Let S, denote the sum of n terms of the given series, then :Z[n(n2+2n+1)+(2n2+3n+1)+(n+1)+4]

S, =2 T, :Z(rf+2n2+n+2n2+3n+1+n+1+4)

k=1

or S, =Y (8K —12k>+6k—1) :%(n3+4n2+5n+6)
k=1
= 8§n:k3 - 122": K+ 6Zn:k — il Exercise 6.11
k=l = =k1 = k1 k1
2 Sum the following series upto n terms.
zg[n(n+l)} _lz[n(n+l)(2n+1)}+6{n(n+1)}_n 8 P
6 1. Ix1+2x4+3x7+... 2. Ix34+3x6+5%x9+...
=2n"(n+1)" - 2n(n+1)2n+1)+3n(n+1)—n 3 Ix4+2x7+3x10+... 4. 3x5+5x9+7x13+...
=2 (n® + 20+ 1) 2n(2n” + 30+ 1)+ n(3n+3) - n 5. 4345+ 6. 24548+
2 2 2 2 2 2

—on[(n + 20> + 1) — (2n% + 30+ 1)+ n(Gn+3—1) 7 2x1°+4%x2°+6%x3" +... 8. 3x2°+5%x3°+7x4" +...

; 0. 2x4xT7+3x6x10+4x8x13+...
=2n[n" —2n—1]+nBn+2)

10.. 1x4x6+4x7x10+7x10x14 +...

=n[2n’ —4n—2+3n+2] S U

, , 1. 1+0+2)+(1+2+3)+... 12, I"'+(1"+29)+(1°+2"+3)+...
=nl2n” —n]=n[n(2n"~1)] 13. 24+(Q2+5+Q2+5+8)+... 14. Sum the series.

=n’[2n° -1 .
w2 =1l ) 12-22432 -4 1.+ (2n—1) - (2n)

i) PP-3+5-7"+.+@n-3"-@4n-1y

Example 2: Find the sum of n terms of series whose nth terms is »’ +§n2 +ln+1 2 12+22 1242243
iii) T+ 5 + 3 +...to n terms

Solution: Given that
15. Find the sum to n terms of the series whose nth terms are given.

T =n3+2n2+ln+1 ) 3 +n+1 i) n*+4n+1
é 21 16. Given nth terms of the series, find the sum to 2n terms.
Thus T, :k3+5k2+5k+1 ) 3n’+2n+1 i)  n’+2n+3

and §,=> (K +%k2 +%k+1)

k=1

version: 1.1 version: 1.1
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7.1 Introduction

The factorial notation was introduced by Christian Kramp (1760 - 1826) in 1808. This
notation will be frequently used in this chapter as well as in finding the Binomial Coefficients

in later chapter. Let us have an introduction of factorial notation.

Let n be a positive integer. Then the productn(n —1)(n-2).... 3.2.1is denoted by

n! or In and read as n factorial.

Thatis, |n1=n(n-1)(n-2)...3.2.1

For Example,
1M=1
2! =2.1 =2 =21 =2.1!
31 =3.2.1 =6 =3! =3.2!
4] =4.3.2.1 =24 = 41 =43
5/ =54321 =120 =5! =5.4]
and 6!=6.543.2.1 =720 —=6! =6.5!

|
Example 1: Evaluate %

|
Solution: 5! _87.6.5432.1

6! 6.54.3.2.1

Example 2: Write 8.7.6.5 in the factorial form

|
R76.5 = 8.7.6.5.4.3.2.1 _ 8!

Solution: —
432.1 4!

@)

version: 1.1

|
Example 3: Evaluate oL
6!3!

| |
Solution: o = (©-8.7)6! =84
6!3!  6!(3.2.1)
9! 9.8.7.6.543.2.1

or =
6!3! 6.5.4.3.2.1.3.2.1

Exercise 7.1

1. Evaluate each of the following:

: ' .. ' 8! .
) 4! i) 6! i) o \Y))
11! : 6! . 8!
V) PIET Vi) 331 vii) Iy viii)
. 9! 15! : 3! .
X ——— X — Xi — Xii
) 21(9-2)! : 151(15-15)! ) 0! )
2. Write each of the following in the factorial form:
i) 6.5.4. i) 12.11.10 i)  20.19.18.17
. 10.9 8.7. . 52.51.50.49
Iv) — V) —— vi) 2
2.1 3.2.1 43.2.1
Vii) nn-1)>)n-2) viii) (n+2)(n+1)n) iX)

X) nn-1n-2)..(n-r+1)

10!
7!

I
214151

4.0 1!

(n+ Dm)(n-1)

3.2.1

@)

version: 1.1
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7.2 Permutation
A
Suppose we like to find the number of different ways to name the
triangle with vertices A, B and C.
The various possible ways are obtained by constructing a tree
diagram as follows:

Start B <j:‘1
A—p
C<B—A

To determine the possible ways, we count the paths of the tree, beginning from the
start to the end of each branch. So, we get 6 different names of triangle.
ABC, ACB, BCA, BAC, CAB, CBA.
Thus there are six possible ways to write the name of the triangle with vertices A, B and
C.
Explanation: In the figure, we can write any one of the three vertices A, B, C at first place.
After writing at first place any one of the three vertices, two vertices are left. So, there are

two choices to write at second place. After writing the vertices at two places, there is just one
vertex left. So, we can write only one vertex at third place.

Another Way of Explanation:
Think of the three places as shown
Since we can write any one of the three vertices at first place, so it is written in 3 different
ways as shown.| 3

Now two vertices are left. So, corresponding to each way of writing at first place, there

are two ways of writing at second place as shown.| 3 2
Now just one vertex is left. So, we can write at third place only one vertex in one way
as shown. | 3 2 1
The total number of possible ways (arrangements) is the product 3.2.1= 6.

This example illustrates the fundamental principle of counting.

Fundamental Principle of Counting:

Suppose A and B are two events. The first event A can occur in
p different ways. After A has occurred, B can occur in q different ways.
The number of ways that the two events can occur is the product p.q.

This principle can be extended to three or more events. For instance, the number of
ways that three events A, B and C can occur is the product p.q.r.

One important application of the Fundamental Principle of Counting is to determine
the number of ways that n objects can be arranged in order. An ordering (arrangement) of
n objects is called a permutation of the objects.

A permutation of n different objects is an ordering (arrangement) of the objects
such that one object is first, one is second, one is third and so on.

According to Fundamental Principle of Counting:

i) Three books can be arranged in a row taken all at a time = 3.2.1 = 3! ways

i)  Number of ways of writing the letters of the WORD taken all at a time

=4.3.2.1 =4

Each arrangement is called a permutation. Now we have the following definition.

A permutation of n different objects taken r (< n) at a time is an arrangement of
the r objects. Generally it is denoted by "P. or P(n,r).

n!
(n—r)!
Proof: Asthereare ndifferent objectstofillup rplaces. So, thefirst place can befilled in nways.
Since repetitions are not allowed, the second place can be filled in (n—1) ways, the third place
is filled in (n-2) ways and so on. The rth place has n—(r—1)=n-r+1 choices to be filled in.

Therefore, bythe fundamental principle of counting, r places can befilled by n different objects
innn-1)(n-2)...(n—r+1)ways

Prove that: "p =n(n-1)(n-2)...(n—r+1)=

version: 1.1
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p =n(n—-1)(n-2)..(n—r+l)

_nn=-D(n=-2).(n-r+)m-r)(n-r-1)...3.2.1
- (n=r)(n—-r-1)...3.2.1
n!

= "P =

" (n-r)!

which completes the proof.

= n different objects can be arranged taken all at a time in n! ways.

Example 1: How many different 4-digit numbers can be formed out of the digits 1, 2, 3, 4,
5, 6, when no digit is repeated?

Solution: The total number of digits = 6
The digits forming each number = 4.
So, the required number of 4-digit numbers is given by:

6 6! 6! 654321

P an T 2 =6.5.4.3 = 360

Example 2: How many signals can be made with 4-different flags when any number of them
are to be used at a time?

Solution: The number of flags = 4
Number of signals using 1 flag = ‘P =4
Number of signals using 2 flags= ‘P =4.3 =12
Number of signals using 3 flags = ‘B, =4.3.2 =24

Number of signals using 4 flags = *P, = 4.3.2.1 = 24
Total Number of signals =4 + 12 + 24 + 24 = 64.

Example 3: In how many ways can a set of 4 different mathematics books and 5 different
physics books be placed on a shelf with a space for 9 books, if all books on the same subject
are kept together?

Solution: 4 different Mathematics books can be arranged among themselves in 4! ways. 5
different Physics books can be arranged among themselves in 5! ways.To every one way of
arranging 4 mathematics books there are 5! ways of arranging 5 physics books. The books
in the two subjects can be arranged subject-wise in 2! ways.

So the number of ways of arranging the books as given by.
4 X 5IX 2l =4X3X2XTX5X4X3X2X1X2X1
= 5740

Exercise 7.2

1.  Evaluate the following:

|) 20})3 “) 161)4 |||) 12})5 |V) 10})7 V) 9})8
2. Find the value of n when:
i) "P,=30 i)y "P=11.10.9 i) "P:"'P,=9:1

3. Prove from the first principle that:
i) nPr _ n'n—llgr_l ii) nPr _ n_1Pr+r~n_1Pr—1
4. How many signals can be given by 5 flags of different colours, using 3 flags at a time?
5. How many signals can be given by 6 flags of different colours when any number of
flags can be used at a time?
6. How manywords can be formed from the letters of the following words using all letters
when no letter is to be repeated:
i) PLANE ii)  OBJECT iii) FASTING?
7. How many 3-digit numbers can be formed by using each one of the digits 2, 3, 5,7, 9
only once?
8. Find the numbers greater than 23000 that can be formed from the digits 1, 2, 3, 5, 6,
without repeating any digit.
HINT: The first two digits on L.H.S. will be 23 etc.

version: 1.1
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9. Find the number of 5-digit numbers that can be formed from the digits 1, 2, 4, 6, 8
(when no digit is repeated), but
i) the digits 2 and 8 are next to each other;
i)  the digits 2 and 8 are not next to each other.

10. How many 6-digit numbers can be formed, without repeating any digit from the digits
0, 1, 2, 3,4, 5? In how many of them will 0 be at the tens place?

11. How many 5-digit multiples of 5 can be formed from the digits 2, 3, 5, 7,9, when no digit
is repeated.

12. In how many ways can 8 books including 2 on English be arranged on a shelf in such a
way that the English books are never together?

13. Find the number of arrangements of 3 books on English and 5 books on Urdu for
placing them on a shelf such that the books on the same subject are together.

14. In how many ways can 5 boys and 4 girls be seated on a bench so that the girls and the
boys occupy alternate seats?

7.2.1 Permutation of Things Not All Different

Suppose we have to find the permutation of the letters of the word BITTER, using all
the letters in it. We see that all the letters of the word BITTER are not different and it has 2
Ts in it. Obviously, the interchanging of Ts in any permutation, say BITTER, will not form
a new permutation. However, if the two Ts are replaced by T, and T,, we get the following
two permutation of BITTER
BIT T,ER and BIT,T ER

Similarly,  the  replacement of the two Ts by T and T

1 2
in any other permutation will give rise to 2 permutation.

Now, BIT T ER consists of 6 different letters which can be permuted among themselves
in 6 ! different ways. Hence the number of permutation of the letters of the word BITTER
taken all at a time

6! 654321
2 2

This example guides us to discover the method of finding the permutation of n things

all of which are not different. Suppose that out of n things, n, are alike of one kind and n,are

360

alike of second kind and the rest of them are all different. Let x be the required number of
permutation. Replacing n, alike things by n.different things and n,alike things by n, different
things, we shall get all the n things distinct from each other which can be permuted among
themselves in n! ways. As n, different things can be permuted among themselves in (n.)!
ways and n, different things can be arranged among themselves in (n,)! ways, so because of
the replacement suggested above, x permutation would increase to x x (n,) ! X (n,)! number
of ways.

xx(n)x(n,)! =(n)!

Hence x=L—( " J

(n)x (n)!

n.,n,

Example 1: In how many ways can be letters of the word MISSISSIPPI be arranged when
all the letters are to be used?

Solution: Number of letters in MISSISSIPPI = 11
In MISSISSIPPI,
I is repeated 4 times
S is repeated 4 times
P is repeated 2 times
M comes only once.

. . 11
Required number of permutation =
4,4,2,1

B (11)!
(DX (D)X(2)% (1)!

34650 ways

version: 1.1
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7.2.2 Circular Permutation

So far we have been studying permutation of things which can be represented by
the points on a straight line. We shall now study the permutation of things which can be
represented by the points on a circle. The permutation of things which can be represented
by the points on a circle are called Circular Permutation.

The method of finding circular permutation is illustrated by the following examples.

Example 2: In how many ways can 5 persons be seated at a round table.

Solution: Let A, B, C, D, E be the 5 persons One of the ways of seating
them round a table is shown in the adjoining figure. If each person
moves one or two or more places to the left or the right, they will, no
doubt, be occupying different seats, but their positions relative to each
other will remain the same.

So, when A occupies a certain seat, the remaining 4 persons will be permuting their seats
among themselves in 4! ways.
Hence the number of arrangements = 4! = 24

Example 3: In how many ways can a necklace of 8 beads of different colours be made?

Solution: The number of beads =8
The number of arrangements of 8 beads in the necklace will be like the seating of 8
persons round a table.
= The number of such necklaces (fixing one of the beads) = 7!
Now suppose the beads are a, b, ¢, d, e, f g, h and the necklace is as shown in Fig. (i)
below:

Figure (i) Figure (ii)

By flipping the necklace we get the necklace as shown in figure (ii). We observe that the
two arrangements of the beads are actually the same.

Hence the required number of necklaces = :%x (7)!'=2520

Exercise 7.3

1. How many arrangements of the letters of the following words, taken all
together, can be made:
i) PAKPATTAN i) PAKISTAN

i) MATHEMATICS iv) ASSASSINATION?

2. How many permutation of the letters of the word PANAMA can be made, if P is to be
the first letter in each arrangement?

3. How many arrangements of the letters of the word ATTACKED can be made, if each
arrangement begins with C and ends with K?

4. How many numbers greater than 1000,000 can be formed from the digits 0, 2, 2,2, 3,
4,47

5. How many 6-digit numbers can be formed from the digits 2, 2, 3, 3, 4, 4? How many
of them will lie between 400,000 and 430,000?

6. 11 members of a club form 4 committees of 3, 4, 2, 2 members so that no member is
a member of more than one committee. Find the number of committees.

7. The D.C.Os of 11 districts meet to discuss the law and order situation in their
districts. In how many ways can they be seated at a round table, when two particular
D.C.Os insist on sitting together?

8. The Governor of the Punjab calls a meeting of 12 officers. In how many ways can they

version: 1.1

version: 1.1
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o. Fatima invites 14 people to a dinner. There are 9 males and 5 females who are seated
at two different tables so that guests of one sex sit at one round table and the guests N e wp o n! he — n!
of the other sex at the second table. Find the number of ways in which all gests are ' (n=r)" " ri(n-r)
seated.

Which completes the proof.

10. Find the number of ways in which 5 men and 5 women can be seated at a round table
in such a way that no two persons of the same sex sit together.

11. In how many ways can 4 keys be arranged on a circular key ring?

12. How many necklaces can be made from 6 beads of different colours?

7.3 Combination

While counting the number of possible permutation of a set of objects, the order is
important. But there are situations where order is immaterial. For example . .
i) ABC, ACB, BAC, BCA, CAB, CBA are the six names of the triangle whose vertices 7.3.1 Complementary Combination
are A, Band C. We notice that inspite of the different arrangements of the vertices
of the triangle, they represent one and the same triangle.

ii)  The 11 players of a cricket team can be arranged in 11! ways, but they are players
ofthe same ssingle team. So, we are interested in the membership of the committee
(group) and not in the way the members are listed (arranged). Therefore, a

combination of n different objects taken r at a time is a set of r objects.
The number of combinations of n different objects taken r at a time is denoted by "C,

Prove that: "C ="C _
Proof: If from n different objects, we select r objects then (n — r) objects are left.
Corresponding to every combination of r objects, there is a combination of (n - r)
objects and vice versa.
Thus the number of combinations of n objects taken r at a time is equal to the number
of combinations of n objects taken (n - r) at a time.

"C = "C

n—r

or C(n, r) or ["j and is given by

!
Other wise: "¢_ = a
(n—r)!(n—n+r)!

Proof: Thereare "C_combinations of n different objects taken r at a time. Each combination
consists of r different objects which can be permuted among themselves in r! ways. So, each
combination will give rise to r! permutation. Thus there will be "C_ x r! permutation of n

2

different objects taken r at a time.
version: 1.1 version: 1.1
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Example 1:  If"C,="C,, findn.

12!

Solution: We know that "C ="C

S "Co="C 4 (i)
Butitis giventhat n"C,="C, (if)
From (i) and (ii), we conclude that
nCn-s = n(:12
= n-8=12
n=20

Example 2: Find the number of the diagonals of a 6-sided figure.

Solution: A 6-sided figure has 6 vertices. Joining any two vertices we get a line segment.

|
Number of line segments °C, :% =15

But these line segments include 6 sides of the figure
Number of diagonals=15-6=9

Example 3: Prove that: "'C +™'C_ ="C

Solution: LH.S. = ™C+"C |
_n-1 N n—1

rln=1=r |r=1ln—r

n—1 n—1

:Hr—ﬂn—r—i lr=1(n—r)n—r-1

B n—1 _{l+ 1 }_ n—1 (n—r+r
r—1ln=—r=1lr n-r |r—Hn—r—1Lﬂn—r)

B S
Hr=ln-r)|n-r—1 |rln—r '

10.

=R.H.S.
Hence ™'C +"'C_.="C

r

Exercise 7.4

Evaluate the following:

), i) 2C i) C,
Find the value of n, when
) rc.=nc, i) =X iy ec=nc,

2!

Find the values of n and r, when

) "C =35 and "P = 210

iy »'C_,."C omC,, =3:6:11
How many (a) diagonals and (b) triangles can be formed by joining the vertices of the
polygon having:

i) 5sides i) 8sides i) 12 sides?

The members of a club are 12 boys and 8 girls. In how many ways can a committee of 3
boys and 2 girls be formed?

How many committees of 5 members can be chosen from a group of 8 persons when
each committee must include 2 particular persons?

In how many ways can a hockey team of 11 players be selected out of 15 players? How
many of them will include a particular player?

Show that: °C,, +'°C, = 'C,,

There are 8 men and 10 women members of a club. How many committees of can be
formed, having;

i) 4women ii) atthe most4women iii) atleast4 women?

Prove that "C +"C , =""C

7.4 Probability

We live in an uncertain world where very many events cannot be predicted with

complete certainty, e.g.

i) In a cloudy weather, we cannot be sure whether it will or will not rain. However,

version: 1.1

version: 1.1
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we can say that there is 1 chance out of 2 that the rain will fall.

ii) There are 6 theorems on circle out of which one theoremis asked in the Secondary
School Examination. Evidently, thereis 1 chance out of 6 that a particular theorem
will be asked in the examination.

In simple situations, we are guided by our experience or intuition. However, we cannot
be sure about our predictions. Nevertheless, in more complex situations, we cannot depend
upon guess work and we need more powerful tools for analyzing the situations and adopting
the safer path for the achievement of our goals.

Inordertoguideinsolvingcomplexproblemsofeverydaylife,twoFrenchMathematicians,
BLAISE PASCAL (1623-62) and PIERRE DE FERMAT (1601 - 65), introduced probability
theory. A very simple definition of probability is given below:

Probability is the numerical evaluation of a chance that a particular event would
occur.

This definition is too vague to be of any practical use in estimating the chance of the
occurrence of a particular event in a given situation. But before giving a comprehensive
definition of probability we must understand some terms connected with probability.

Sample Space and Events: The set S consisting of all possible outcomes of a
given experiment is called the sample space. A particular outcome is called an event
and usually denoted by E. An event E is a subset of the sample space S. For example,

i) In tossing a fair coin, the possible outcomes are a Head (H) or a Tail (T) and it is

writtenas: S={H, T} = n(S)=2.

i)  Inrolling a die the possible outcomes are 1 dot, 2 dots, 3 dots, 4 dots, 5 dots or 6

dots on the top.

S$=1{1,2,34506}= n(S) =6
To get an even number 2, 4 or 6 is such event and is written as:
E={2,4,6} = n(E)=3

Mutually Exclusive Events: If a sample space S={1,3,5,7, 9} and an event A={1, 3, 5}
and another event B = {9}, then A and B are disjoint sets and they are said to be mutually
exclusive events. In tossing a coin, the sample space S ={H, T}. Now, if event A={H } and
event B={T}, then Aand B are mutually exclusive events.
Equally Likely Events: We know that if a fair coin is tossed, the chance of head appearing

on the top is the same as that of the tail. We say that these two events are equally likely.
Similarly, if a die, which is a perfect unloaded cube is rolled, then the face containing 2 dots
is as likely to be on the top as the face containing 5 dots. The same will be the case with any
other pair of faces. In general, if two events A and B occur in an experiment, then A and B
are said to be equally likely events if each one of them has equal number of chances
of occurrence.

The following definition of Probability was given by a French Mathematician, P.S.Laplace
(1749 - 1827) and it has been accepted as a standard definition by the mathematicians all
over the world:

If a random experiment produces m different but equally likely out-comes and n
outcomes out of them are favourable to the occurrence of the event E, then the probability
of the occurrence of the event E is denoted by P(E) such that

n _n(E) _ no.of ways in which event occurs

P(E)=—=
m n(S) no.the elements of the sample space

Since the number of outcomes in an event is less than or equal to the number of
outcomes in the sample space, the probability of an event must be a number between 0 and
1.

Thatis, 0 < P(E) <1

i) If P{E) = 0, event E cannot occur and E is called an impossible event.

i) If P(E) = 1, event E is sure to occur and E is called a certain event.

Example 1: Adieis rolled. What is the probability that the dots on the top are greater than
47
Solution: §={1,2,3,4,5,6} = n(S) = 6
The event E that the dots on the top are greater than4={5,6}
n(E) _2

= nE) = 2 P(E):Z(S)_6 %

Example 2: What is the probability that a slip of numbers divisible by 4 are picked from the
slips bearing numbers 1, 2, 3, ......,10
Solution: §={1,2,3,...,10} = n(S) = 10

Let £ be the event of picking slip with number divisible by 4.

version: 1.1
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E={48} = n(f)=2

pEy="E)_ 2 _
n(S) 10

1
5
7.4.1 Probability that an Event does not Occur

If a sample space S is such that n(S) = N and out of the N equally likely events an event
E occurs R times, then, evidently, E does not occur N — R times.
The non-occurrence of the event £ is denoted as E .

Now P(E):Zg)) :%
—, nE) N-R N R__ R
e P(E)—n((S))— NN NN
P(E)=1-p(E).

Exercise 7.5

For the following experiments, find the probability in each case:
1.  Experiment:
From a box containing orange-flavoured sweets, Bilal takes out one sweet without
looking.
Events Happening:
i)  the sweetis orange-flavoured
i) the sweet is lemon-flavoured.
2. Experiment:
Pakistan and India play a cricket match. The result is:
Events Happening: i) Pakistan wins ii)  India does not lose.
3. Experiment:
There are 5 green and 3 red balls in a box, one ball is taken out.
Events Happening: i) the ball is green i)  theballis red.

10.

Experiment:
A fair coin is tossed three times. It shows
Events Happening: i) One tail i)
Experiment:

A die is rolled. The top shows

Events Happening: i) 3 or4dots i)
Experiment:

From a box containing slips numbered 1,2, 3, ..
Events Happening:

i) the number on the slip is a prime number

i)  the number on the slip is a multiple of 3.
Experiment:

Two die, one red and the other blue, are rolled simultaneously. The numbers of dots
on the tops are added. The total of the two scores is:

Events Happening: i) 5 i) 7 i) 11.

Experiment:

A bag contains 40 balls out of which 5 are green, 15 are black and the remaining are
yellow. A ball is taken out of the bag.

Events Happening:

i) The ball is black i)
Experiment:

One chit out of 30 containing the names of 30 students of a class of 18 boys and 12
girls is taken out at random, for nomination as the monitor of the class.

Events Happening:

i) the monitor is a boy i)
Experiment:

A coin is tossed four times. The tops show
Events Happening:

i) all heads i)

atleast one head.

dots less than 5.

. 5 one slip is picked up

The ball is green iii)  The ball is not green.

the monitor is a girl.

2 heads and 2 tails.

version: 1.1
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7.4.2 Estimating Probability and Tally Marks

We know that P(E)= ngi , Where E is the event and S is the sample space. The fraction
n

showing the probability is very often such that it is better to find its approximate value. The
following examples illustrate the necessity of approximation.

Example 1: The table given below shows the result of rolling a die 100 times. Find the
probability in which odd numbers occur.

Event Tally Marks Frequency
1 A - 25
2 NIRRT [ 13
3 A 14
4 RN 24
> ] 8
6 M| 16
Solution: Required probability = 2ov1ars_47 _1 (approx.)

100 100 2

Example 2: The number of rainy days in Murree during the month of July for the past ten
years are: 20, 20, 22, 22, 23, 21, 24, 20, 22, 21

Estimate the probability of the rain falling on a particular day of July. Hence find the
number of days in which picnic programme can be made by a group of students who wish
to spend 20 days in Murree.

7. Permutation Combination and Probability elLearn.Punjab

Solution: Let £ be the event that rain falls on a particular day of a July.

20+20+22+22+23+21+24+20+22+21

P(E)=
(E) 31x10

215

=30"

Number of days of raining in 20 days of July =20x 0.7=14
The number of days fit for picnic=20-14=6

0.7 (approx).

Exercise 7.6

1.  Afair coin is tossed 30 times, the result of which is tabulated below. Study the table
and answer the questions given below the table:

version: 1.1

Event | Tally Marks | Frequency
Head TR 14
Tail J- 16

i) How many times does ‘head’ appear?
i)  How many times does ‘tail' appear?
iii)  Estimate the probability of the appearance of head?
iv)  Estimate the probability of the appearance of tail?
2. Adieistossed 100 times. The result is tabulated below. Study the table and answer the
guestions given below the table:

Event Tally Marks | Frequency
1 HH- - 1 14
2 TR 17
3 TR 20
4 -S04 18
5 M- 15
6 - 16

i) How many times do 3 dots appear?
i)  How many times do 5 dots appear?

iii)  How many times does an even number of dots appear?

Q)

version: 1.1
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iv)  How many times does a prime number of dots appear?
v)  Find the probability of each one of the above cases.

3. The eggs supplied by a poultry farm during a week broke during transit as follows:
1%, 2%, 1%%,%%, 1%, 2%, 1%

Find the probability of the eggs that broke in a day. Calculate the number of eggs that
will be broken in transiting the following number of eggs:
i) 7,000 i) 8,400 iii) 10,500

7.4.3 Addition of Probabilities

We have learnt in chapter 1, that if A and B are two sets, then the shaded parts in the
following diagram represent AU B

If Aand B If Aand B

are disjoint are overlapping i
A 2 A

/ \ 8 =X =g\

The above diagrams help us in understanding the formulas about the sum of two
probabilities.
We know that:
P(E) is the probability of the occurrence of an event E.
If Aand B are two events, then
P(A) = the probability of the occurrence of event A;
P(B) = the probability of the occurrence of event B;
P(AUB) = the probability of the occurrence of AU B.
P(A N B) = the probability of the occurrence of AnB.
The formulas for the addition of probabilities are:
i)  P(AUB) = P(A) + P(B), when A and B are disjoint

(=)

version: 1.1
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i)  P(AUB) = P(A) + P(B) — P(AN B)
when A and B are overlapping or BSA.
Let us now learn the application of these formulas in solving problems involving the
addition of two probabilities.

Example 1: There are 20 chits marked 1, 2, 3,....,20 in a bag. Find the probability of picking
a chit, the number written on which is a multiple of 4 or a multiple of 7.

Solution: Here S={1,2,3,...,20} = n(S)=20
Let A be the event of getting multiples of 4.
A ={4,8,12,16,20} = n(A) =5

5 1

P(4)=—=—

) 20 4
Let B be the event of getting multiples of 7

B ={7,14} = n(B) =2

2 1

P(B)=—=—

(B) 20 10

As A and B are disjoint sets

r 1 7
P(AUB)=p(A)+ p(B)=—+—=—
( )p()p()41020
Example 2: Adieisthrown. Find the probability that the dots on the top are prime numbers
or odd numbers.

Solution: HereS={1,2,34,5,6} = n(S) =6
Let A= Setof prime numbers ={2,3,5} = n(A) =3
Let B =Set of odd numbers ={1,3,5} =n(B) =3

~ANB ={2,3,5/n{1,3,5} = {3,5} =>n(4NB) =2

3 1 3 1 2 1
Now P(4d)= ==—, P(B) === —, P(AnB)===—
) 6 2 (B) 6 2 ( ) 6 3

version: 1.1
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Since A and B are overlapping sets.
P(AUB) = P(A)+ P(B)—P(ANB)

1 2
+__ J—
2 3

o | =
W | —

Exercise 7.7

1. If sample space= {1, 2, 3,9}, Event A = {2, 4, 6, 8 and Event B = {1, 3, 5}, find
P(AU B)

2. Aboxcohtains10red,30whiteand20b|ackmarb|es.AmarbIeisdrawnatrandom.Find
the probability that it is either red or white.

3.  Anatural numberis chosen out of the first fifty natural numbers. What is the probability
that the chosen number is a multiple of 3 or of 5?

4. A card is drawn from a deck of 52 playing cards. What is the probability that it is a
diamond card or an ace?

5. Adieisthrown twice. What is the probability that the sum of the number of dots shown
is3or11?

6. Two dice are thrown. What is the probability that the sum of the numbers of dots
appearing on themis4or6?

7. Two dice are thrown simultaneously. If the event A is that the sum of the numbers of
dots shown is an odd number and the event B is that the number of dots shown on at
least one die is 3. Find P(4U B)

8. Thereare 10 girls and 20 boys in a class. Half of the boys and half of the girls have blue
eyes. Find the probability that one student chosen as monitor is either a girl or has blue
eyes.

7.4.4 Multiplication of Probabilities

We can multiply probabilities of dependent as well as independent events. But, in
this section, we shall find the multiplication of independent events only. Before learning
the formula of the multiplication of the probabilities of independent events, it is necessary
to understand that what is meant by independent events.

Two events A and B are said to be independent; if the occurrence of any one of

them does not influence the occurrence of the other event. In other words, regardless
of whether event A has or has not occurred, if the probability of the event B remains the
same, then A and B are independent events.

Suppose a bag contains 12 balls. If 4 balls are drawn from it twice in such a way that:

i) the balls of the first draw are not replaced before the second draw;

i)  the balls of the first draw are replaced before the second draw.

In the case (i), the second draw will be out of (12 — 4 = 8) balls which means that the
out-comes of the second draw will depend upon the events of the first draw and the two
events will not be independent. However, in case (ii), the number of balls in the bag will be
the same for the second draw as has been the case at the time of first draw i.e. the first draw
will not influence the probability of the event of second draw. So the two events in this case
will be independent.

Theorem: If A and B are two independent events, the probability that both of them
occur is equal to the probability of the occurrence of A multiplied by the probability of
the occurrence of B. Symbolically, it is denoted as:

P(ANB) = P(A).P(B)
Proof: Let event A belong to the sample space S, such that
m,

niS,) = n, and nA)=m, = P4)=—

1 ”1
Let event B belong to the sample space S, such that

m
ns,) = n, and nBy=m, = pB)=—>
n,
A and B are independent events
Total number of combined outcomes of Aand B = n, n,
and total number of favourable outcomes = m.m,
mm, m,

P(AnB) = T " T pog). p(B)
mn, n.n,

version: 1.1

version: 1.1
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Example 1 The probabilities that a man and his wife will be alive in the next 20 years are 0.8
and 0.75 respectively. Find the probability that both of them will be alive in the next 20 years.

Solution: If P(A) is the probability that the man will be alive in 20 years and P(B) is the
probability that his wife be alive in 20 years.
The two events are independent:

P(A)= 0.8 P(B) = 0.75
The probability that both man and wife will be alive in 20 years
is given by:

P(ANB) = 0.8x0.75 = 0.6

Example 2:  Two dice are thrown. E is the event that the sum of their dots is an odd
number and E, is the event that 1 is the dot on the top of the first die. Show that
P(E,NE,) = P(E).P(E,)

Solution: E, ={(1,2), (1,4), (1, 6), (2, 3), (2, 5), (3,4), (3.,6), (4, 3) (4, 5)
(5,6), (2, 1), (4, 1), (6,1), (3, 2), (5, 2), (6, 3), (5, 4), (6, 5)}

= n(E)=18
E,={1,1).(1,2),(1,3),(1,4),(1,5), (1, 6)}

= n(E)=6
n(S) = 6X6 =36

18 1 6
P(E)==—— — and&P —_— =
( 1) 36 5 an @2) 36

[—

7. Permutation Combination and Probability

version: 1.1

2.

E, and E, are independent

11 1
P(E).P(E,)) == .~ —
(£).P(E) =2 -2 35

Now E,nE, = {(1,2),(1,4),(1,6)}
= nlENE) = 3

3 1
P(ElmEz) = % = E

Hence P(E,NE,) = P(E).P(E))

Exercise 7.8
The probability that a person A will be alive 15 years hence is % and the probability that

7
another person B will be alive 15 years hence is § . Find the probability that both will
be alive 15 years hence.

A die is rolled twice: Event E, is the appearance of even number of dots and event £, is

the appearance of more than 4 dots. Prove that: P(E, "E,) = P(E)).P(E,)

Determine the probability of getting 2 heads in two successive tosses of a balanced
coin.

Two coins are tossed twice each. Find the probability that the head appears on the first
toss and the same faces appear in the two tosses.

Two cards are drawn from a deck of 52 playing cards. If one card is drawn and replaced
before drawing the second card, find the probability that both the cards are aces.
Two cards from a deck of 52 playing cards are drawn in such a way that the card is
replaced after the first draw. Find the probabilities in the following cases:

i) first card is king and the second is a queen.

i)  both the cards are faced cards i.e. king, queen, jack.

Two dice are thrown twice. What is probability that sum of the dots shown in the first
throw is 7 and that of the second throw is 11 ?

Find the probability that the sum of dots appearing in two successive throws of two

version: 1.1

dice is every time 7.
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9. Afair die is thrown twice. Find the probability that a prime number of dots appear in
the first throw and the number of dots in the second throw is less than 5.
10. A bag contains 8 red, 5 white and 7 black balls, 3 balls are drawn from the bag. What

is the probability that the first ball is red, the second ball is white and the third ball is
black, when every time the ball is replaced?

HINT: (ixi)(lj is the probability.
20 )L 20 )\ 20

version: 1.1
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8. Mathematical Inductions and Binomial Theorem

8.1 Introduction

Francesco Mourolico (1494-1575) devised the method of induction and applied this
device first to prove that the sum of the first n odd positive integers equals n?. He presented
many properties of integers and proved some of these properties using the method of
mathematical induction.

We are aware of the fact that even one exception or case to a mathematical formula is
enough to prove it to be false. Such a case or exception which fails the mathematical formula
or statement is called a counter example.

The validity of a formula or statement depending on a variable belonging to a certain
set is established if it is true for each element of the set under consideration.

For example, we consider the statement S(n) = n?— n + 41 is a prime number for every
natural number n. The values of the expression n>— n + 41 for some first natural numbers
are given in the table as shown below:

n 1 2 3 4 5 6 7/ 8 9 10 11
S(n) 41 43 47 53 61 71 83 91 113 1 131 | 151

From the table, it appears that the statement S(n) has enough chance of being true. If
we go on trying for the next natural numbers, we find n = 41as a counter example which fails
the claim of the above statement. So we conclude that to derive a general formula without
proof from some special cases is not a wise step. This example was discovered by Euler
(1707-1783).

Now we consider another example and try to formulate the result. Our task is to find
the sum of the first n odd natural numbers. We write first few sums to see the pattern of
sums.

n (The number of terms) Sum

L T 1=12
D - 1+3=4 =22
B - 1+3+5=9=32
A e 1+3+5+7=16=42
D - 1+3+5+7+9=25 = 52
B o 1+3+5+7+9+11=36= 62

version: 1.1
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The sequence of sums is (1) (2)% (3)% (4)% ...

We see that each sum is the square of the number of terms in the sum. So the following
statement seems to be true.

For each natural number n,

1+3+5+....+2n-1)=n?....(i) (" nthterm=1+(n - 1)2)

But it is not possible to verify the statement (i) for each positive integer n, because it
involves infinitely many calculations which never end.

The method of mathematical induction is used to avoid such situations.Usually it is
used to prove the statements or formulae relating to the set {1,2,3,...} but in some cases, it
is also used to prove the statements relating to the set (0,1,2 ,3,...}.

8.2 Principle of Mathematical Induction

The principle of mathematical induction is stated as follows:

If a proposition or statement S(n) for each positive integer n is such that

1) S(1)is truei.e., S(n) is true forn =1 and

2)  S(k+1)is true whenever S(k) is true for any positive integer k, then S(n) is true for
all positive integers.

3n(n+1)

Example 1: Use mathematical induction to prove that 3+6+9+....+3n=
positive integer n.

for every

Solution: Let S(n) be the given statement, that is,

version: 1.1
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Solution: Let S(n) be the given statement,
3n(n+1)

S(n): 3+6+9...+3n= 2:n(n+1)(2n+1)

[
(1) S(n): 1P+2°+3%+..+n .

1. Whenn=1, 5(1) becomes 1. Ifn=1,5(1) becomes

S(1): 3= 3 I0+1)2x1+1) 1x2x3

6 6

1

3+ _
2 SMy:(1)* =
Thus S(1) is true i.e., condition (1) is satisfied.

2.  Letusassume that S(n) is true for any n = ke N, thatis, Thus 5(1) is true, i.e., condition (1) is satisfied.

2. Let us assume that S(k) is true for any k € N, that is,

3k(k +1)
3+6+9....+3k = (A)
12+22+32+....+k2:k(k+1)2(2k+1) (A)
The statement for n = k+ 1 becomes —
Shk+1): P+22+3% +.. +k+(k+1)° = (k+ Dk +1+DERE+T+])

3k(k+ D[ (k+1)+1] 6

3+46+9....+3k+3(k+1) = 5 _(k+1D)(k+2)(2k +3) (B)
3(k+1)(k +2) B) 6
2 Adding (k+1)? to both the sides of equation (A), we have
Adding 3(k+ 1) on both the sides of (A) gives E 1Y ]
3k(k +1) P4+2°+3 .+ +(k+1)Y = (:+ ):( 1) (k 1)y
3464+9+....+3k+3(k+1)= +3(k+1)
2 _(k+D[kQk+1)+6(k +1)]
=3(k+1)(5+1) 6
2 (k +1)(2k>+k + 6k + 6)
3(k+1)(k +2) = .
2 _(k+1)(2Kk* + 7k +6)
Thus S(k + 1) is true if S(k) is true, so the condition (2) is satisfied. = 6
Since both the conditions are satisfied, therefore, S(n) is true for each positive integer (k +1)(k +2)(2k +3)
n. - 6
o _ o Thus the condition (2) is satisfied. Since both the conditions are satisfied, therefore, by
Example 2: Use mathematical induction to prove that for any positive integer n, mathematical induction, the given statement holds for all positive integers.
2, A2, A2 » _n(n+1)(2n+1) 3
Pr2iedit.an = 6 Example 3: Show that n_+2n represents an integer VneN.
version: 1.1 version: 1.1
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n +2n

Solution: Let S(n)=

1. When n =1, S(1) becomes

13+2(1)_§_
3

S(1) = leZ

2. Let us assume that S(n) is ture for any n = k € W, that is,

kK +2k

S(k)= represents an integer.

Now we want to show that S(k+l) is also an integer. For n=k+1, the statement becomes

(k+1) +2(k +1)
3
A3+ 3k +1+42k+2 (K +2k)+ 3k +3k+3)
- 3 3
(K +2k)+3(k* + k+1)
3

Stk+1)=

3
KAZK v k+1)

k+2k

As is an integer by assumption and we know that (k* + k + 1)is an integer as

ke W.
S(k + 1) being sum of integers is an integer, thus the condition (2) is satisfied.
Since both the conditions are satisfied, therefore, we conclude by mathematical

n +2n

induction that represents an integer for all positive integral values of n.

Example 4: Use mathematical induction to prove that

n+l
3+3.5+3.5° +....+3.5" =¥ whenever n is non-negative integer.

version: 1.1

®

Solution: Let 5(n) be the given statement, that is,

The dot (.)between

n+l _
M two number, stands,

S(n): 3+3.5+35 +...+3.5" = 2

for multipication symbol.

0+1
1.  Forn=0, S(0) becomes $(0):3.5° :¥ or :3(57_1) 3

Thus S(0) is true i.e., conditions (1) is satisfied.

2. Let us assume that S(k) is true for any k € W, that is,

k+1
S(k):3+3.5+3.5 +...+3.5" :y (A)
Here S(k+1) becomes
(k+D+1
Sk+1):3+3.5+3.5 +....+3.5" +3.5" 367D
3 5k+2 _1
Adding 3.5%1 on both sides of (A), we get
k+l
343.54+3.5 +....+3.5* +3.5" :¥+35"*1
35" —1+4.5M
4
35+ 4)-1]
4
3(5k+2 _1)
4

This shows that S(k + 1) is true when S(k) is true. Since both the conditions are satisfied,
therefore, by the principle of mathematical induction, S(n) in true for each n e W.

O,

version: 1.1
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Shk+1): 1+3+5+...+ 2k +5)+ 2k +1+5)=(k+1+3)> =(k+4)*> (B)
Adding (2k +1+5)=(2k +7) on both sides of equation (A) we get,
1+3+5+...+2k+5)+(2k+7)=(k+3)°+(2k+7)
= k*+6k+9+2k+7
k?+8k+ 16
(k + 4)
Thus the condition (2) is satisfied. As both the conditions are satisfied, so we conclude
that the equation is true for all integers n >— 2.

For example, we consider the statement that 3" is an even integer for any positive
integer n. Let S(n) be the given statement.

Assume that S(k) is true, that is, 3k in an even integer for n = k. When 3k is even, then
3k+ 3k + 3¥is even which implies that 3k .3= 3k*1 is even.

This shows that S(k + 1) will be true when S(k) is true. But 3" is not an even integer which
reflects that the first condition does not hold. Thus our supposition is false.

_ Solution: Let S(n) represents the given statement i.e., S(n): 4" > 3" + 4 for integral values of
n=>2.

Example 6: Show that the inequality 4" > 3" + 4 is true, for integral values of n>2.

Sometimes, we wish to prove formulae or statements which are true for all integers 1. Forn=2, S(2) becomes
n greater than or equal to some integer /, where i =1. In such cases, 5(1) is replaced by 5(i) S(2):42>32+4,i.e., 16> 13 which is true.
and the condition (2) remains the same. To tackle such situations, we use the principle of Thus S(2) is true, i.e., the first condition is satisfied.
extended mathematical induction which is stated as below: 2. Let the statement be true for any n = k(>2) €Z, that is
4k>3k+ 4 (A)
8.3 Principle of Extended Mathematical Induction Multiplying both sides of inequality (A) by 4, we get
or 4.4>4(3+4)
Let i be an integer. If a formula or statement S(n) for n>i is such that or 4>(3+1)3k+16
1) S(i) is true and or 41 >3+ 443k +12
2)  S(k+ 1) is true whenever S(k) is true for any integer n>|. or 41>3k1+4 (~-3k+12>0) (B)
Then S(n) is true for all integers n>i. The inequality (B), satisfies the condition (2).
Since both the conditions are satisfied, therefore, by the principle of extended
Example 5: Showthat1+3+5+....(2n+ 5) = (n+ 3)*for integral values of n>-2. mathematical induction, the given inequality is true for all integers n>2.
Solution: Exercise 8.1
1. Let S(n) be the given statement, then for n = -2, S(-2) becomes, 2(-2)+5=(-2+3)?,
i.e., 1 =(1)>which is true. Use mathematical induction to prove the following formulae for every positive integer
Thus S(-2) is true i.e., the condition (1) is satisfied n.
2.  Letthe equation be true foranyn=keZ,k >-2, so that 1. 1+4549+...+(4n-3)=n2n-1)
143+45+....+(2k+5)= (k+ 3)? (A)
version: 1.1 version: 1.1
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2. 143+5+..+Q2n-D)=n’

n(3n—1)

3. 1+4+7+...+(3n-2)=

4. 1+24+4+....+2""=2"—1

5. 1+l+l+....+ 171:2 1—L
2 4 2" 2"

6. 2+4+6+...+2n=n(n+1)

7. 2+6+18+....+2x3"1=3"-1

8. 1x3+2><5+3><7+....+n><(2n+1):”(”+1)6(4”+5)
9. 1><2+2><3+3><4+....+n><(n+1):”(”“;(”*2)
10. 1><2+3><4+5><6+....+(2n—1)><2n:”(”“)3(4”‘1)
11. 1 + : + ! + .t 1 =1 !

Ix2 2x3 3x4 n(n+1) n+1
12. ! + ! + ! ot ! __n

Ix3 3x5 5x7 Qn-1Q2n+1) 2n+1
13, L, 1,1 ! n

+ + - =
2x5 5x8 8xll Gn-1)(Gn+2) 23n+2)

ST R

15. a+(a+a’)+(a+2d)+....+[a+(n—l)d]:§[2a+(rz—1)d]

14. r+r7+r+...+r

16. 1[1+22+33+...4nn=|n+1-1

17. a,=a,+(n-1)d when,a,, a, +d,a, +2d, ... form an A.P.

18. a,=ar"" when a,ar,ar’,..forma G.P.

n

version: 1.1

nén” -1
3

(H)

19. 1P+3*+5+..+02n-1)’=

o JGHG)

21. Prove by mathematical induction that for all positive integral values of n
i) n? + n is divisible by 2. i) 5"—2"is divisible by 3.
iii)  5"-1is divisible by 4. iv) 8x 10"- 2 is divisible by 6.

v)  n3-nisdivisible by 6.

22. l+L2+....+l:l[1—i}
3 3 3" 2 3"

_ (=) n(n+1)

23. IP-2°+3¥ -4 +...+(-D)" 5

24. P +3+5+..+Q2n-1)y =n’[2n" -1]

25. x+1isafactorof x* —1;(x=—-1)

26. x-Yyisafactorofx"— y"; (x#Yy)

27. x+Yyisafactor of x"+ y21 (x # —y)

28. Use mathematical induction to show that

1+2+22+....+2"=2""—1 for all non-negative integers n.

29. If Aand B are square matrices and AB = BA, then show by mathematical induction that

AB" = B"A for any positive integer n.

30. Prove by the Principle of mathematical induction that n>— 1 is divisible by 8 when n is

an odd positive integer.

31. Use the principle of mathematical induction to prove that Inx” = n Inx for any integer
n > 0 if x is a positive number. Use the principle of extended mathematical induction

to prove that:
32. n!>2"-1 forintegral values of n > 4.
33. n?>n + 3forintegral values of n > 3.
34. 47>3"+ 2" forintegral values ofn > 2.
35. 3"<n!forintegral valuesofn>6.
36. n!>n? forintegral valuesofn > 4.

()
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37. 3+5+7+..+(2n+5)=(n+2)(n+4)forintegral values of n>-1.
38. 1+nx<(1+x) forn=2and x> -1

8.4 Binomial Theorem

An algebraic expression consisting of two terms such as a + x, x— 2y, ax + b etc., is called
a binomial or a binomial expression.

We know by actual multiplication that

(a+x)>=0a%+ 2a0x + x? (i)

(a+x)P=a%+30°x+3ax*> + x> (i)

The right sides of (i) and (ii) are called binomial expansions of the binomial a + x for the
indices 2 and 3 respectively.

In general, the rule or formula for expansion of a binomial raised to any positive integral
power n is called the binomial theorem for positive integral index n.For any positive integer

or briefly

(a+x)" = Zn: {n)a”_rx’
=0 \V

where g and x are real numbers.

The rule of expansion given above is called the binomial theorem and it also holds if a
or x is complex.

Now we prove the Binomial theorem for any positive integer n, using the principle of
mathematical induction.

Proof: Let S(n) be the statement given above as (A).

8. Mathematical Inductions and Binomial Theorem elLearn.Punjab

version: 1.1

(2)

1. If n =1, we obtain

S):(a+x) =£1)]a1 +G]al_1x: a+x

Thus condition (1) is satisfied.

2.  Letus assume that the statement is true for any n = k€ N, then

k k k k k
(a+x) = a + a“'x+ a x4+ a g a7 x’
0 | 2 r—1 r
+....+(kk ]axk +(lljxk (B)

k+1 k+1 k+1
S(k+1)2(a+k)k+l=( g ]ak+l+( 1+ jakxx+( N jak_lxx2+....+

k+1 k+1 k+1 k+1
a4 A xx o+ axx’ + X! (@)
r—1 r k k+1

Multiplying both sides of equation (B) by (a+x), we have

@+ 0@+ =(a+ )K"] S e
arxjparx) =arx a a X a X a X
0 1 2 r—1

version: 1.1
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o) 0 Jelrlataf o 7 Jomers

k+1 k+1 k+1
(a+x)k+l=( O+ Jak“+( 1+ jakx+[ ; )ak_1x2+...

k+1 1 1
+ " a“ x4 ke a x* + ke X
r k k+1

We find that if the statement is true of n = k, then it is also true for n = k +1.
Hence we conclude that the statement is true for all positive integral values of n.

8. Mathematical Inductions and Binomial Theorem
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version: 1.1

As all the terms of the expansion can be got from it by putting r=0, 1,2..... n, so we call
it as the general term of the expansion.
a 2Y
Example 1: Expand (5__) also find its general term.
a
6 6
Solution: (ﬁ—zj = E+(_—2)
2 a 2 a
a\ (6\aY( 2 6\ a) 2V (6)(aY( 2Y
== + —||-=1+ — |+ = + —||-=
2 1)\ 2 a 2N\ 2 a 3N2 a
6 aY( 2Y (6)a) 2Y ( 2Y
+ —||—=| + — || —-=1 +| =
47\ 2 a SN2 a a
a’ a’ ( 2) 6.5 a* 4 654a3( 8) 6.5 a’
=—+6| — || —— |[+———.+ — = |t =
64 32 a 116 a* 321 8 a’ d 4
version: 1.1
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al =32 64
+6.—| — |+—
2\ a a

6
:a——ga“+1—5a2 —20+6—?—¥+%
64 8 4 a a a

T.,, the general term is given by

Al e
r)\ 2 a r)2°" a
. _6 aé—_r.a—r . 6 a6—2r . 6 g 6-2r
=(h ﬂ}jzg?z" ( 1)'[rJ262’ (D [r](2j

Example 2: Evaluate (9.9)°

Solution: (9.9)° = (10-.1)°
=10 +5x(10)4 X (- 1)+ 10(102 x (=. 1)>+10(10)2 x (—. 1>+ 5(10)(=.1)* + (=.1)°
= 100000 - (.5) (10000) + (10000X.01) + 1000(-.001) + 50 (.0001) —.00001
= 100000 - 5000 +100 -1 +.005 - .00001
=100100.005 - 5001.00001
=95099.00499

11
Example 3: Find the specified term in the expansion of (%X_SLJ ;
X

the fifth term
coefficient of term involving x

i) the term involving x° i)
i)  the sixth term from the end. iv)
Solution:

11
i) Let T, bethe term involving x° in the expansion of Gx—ij , then

8. Mathematical Inductions and Binomial Theorem
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3x

13 N7 1Y (113"
T. = = —— | = (1) 37X
(rj(zxj (3xj P D

As this term involves x° , so the exponent of x is 5, that is,
11-2r=35

or 2r=5-11=r=3
Thus T, involves x°

11) 316 5
LT, —=( 1)3.[3j3 e 1).11.10.93_ 5

. . X
213 321 2°
_ 165x243 40095
256 256

ii) Puttingr=4inT ., wegetT,
113" 11.10.9.8 3’
E=( 1" R
=1 (41}2“4'x 4321 27
_11x10x3 27 , 165x27 ,
1 128 64
4455
=—X
64

i)  The 6th term from the end term will have (11 + 1) - 6 i.e., 6 terms before it,
It will be (6 + 1) th term i.e.. the 7th term of the expansion.

1 311712

1 -1
Thus T;Z(IV(éj n 111098737

X —_— —X
PR 54321 2°

_1Ix6x7 1 l 77
1 3x32 x 16x

()
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V) % is the coefficient of the term involving x

8.3.1 The Middle Term in the Expansion of (a + x)"

In the expansion of (a + x), the total number of termsisn + 1
Casel: (nis even)

If n is even then n+1 is odd, so (n;—lj th term will be the only one middle term in the

expansion.

Case II: (n is odd)

n+3

If nis odd thenn+1isevenso (n—ﬂjth and(
) 2
two middle terms.

12
Example 4: Find the following in the expansion of (§+%j ;
X

i) the term independent of x. i) the middle term

Solution: i) Let T, be the term independent of x in the expansion of

12 12-r 2 r 12 12—r
T. = z 2 x12— 20X
r )\ 2 X r)2°"
— (12j22r12.x123r
r

As the term is independent of x, so exponent of x, will be zero.
Thatis, 12-3r=0=r=4.

N | =

12
+%) , then
X

j th terms of the expansion will be the

version: 1.1

, 12
Therefore the required term T, = ( A ]28“2.)82‘12

12X11X10X9.24.x°

4x3x2x1
_11x45 495
2* 16

i) In this case, n = 12 which is even, so
(%Hjth term is the middle term in the expansion,
e., T, is the required term.
RHERE]

B 12 x_6 26 12><11><10><9><8><7x6_12
6 )2° x'? 6x5x4x3x2x1

C12x11x7 924

6 6
X X

8.3.2 Some Deductions from the binomial expansion of (a + x)".

We know that

version: 1.1
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(i) If we puta=1,in(l), then we have;

RN e
(1+x)" = + X+ X 4.+ X+t x4+ X
0 1 2 r n—1 n

n(n !—1) - n(n—1)(n- i)'(n -r+1) o

(Lnj_ n! _n(n—ll....(n—r+1)(n—r)! n(n—l)....(n—r+1]

n—1 n

=1+nx+ +.. Hx +

r _r!(n—r)!_ ri(n—r)! r!

ii)  Putting a =1 and replacing x by —x, in (l), we get.

1 n __ n n n 2 n 3 n n—1 n n

(1-x)"= 0 + . (—x)+ 5 (—x)" + 3 (—x)" +....+ . (—x)" + . (—x)
_ h hn h 2 n 3 ln—l n —ﬁ_l ln n n
—O—1x+2x—3x+....+(—) n—lx_() nx....

iii)  We can find the sum of the binomial cofficients by putting
a=T1and x=1in ().

e, (1+1)”=(Zj+m+(Zj+""+(nn—1j+(:j

iv)  Puttinga =1 and x=-1,in (i) we have

(e (o)

(I1)

(1)

version: 1.1
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s (1) (22 2 ()

If nis odd positive integer, then

If n is even positive integer, then

Example 5: Show that: [nj + 2(”) + 3("} ot n(n} =n2""
1 2 3 n

Solution:

[nj+2(n)+3(n}+....+n(n} =n LMD +3n(n —D(n=2) +... 4.1
1 2 3 n 2! 3!

:n._1+(n—1)+(n_1;$2)+....+1}

version: 1.1
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Exercise 8.2

Using binomial theorem, expand the following:
x 2 x Y
——— I 3a——
2 xzj ) ¢ 3a)
7 2 8 6
v (23] ) 1+_y] i [ z]
a 2y X X a

Calculate the following by means of binomial theorem:
)] (0.97)° i) (2.02)* i) (9.98) iv)  (21)

) (a+2b) i)

Expand and simplify the following:
) (a+\/§x)4 +(a—\/§x)4 i)

i) (2+i) —(2-0) iv)

(2+\/§)5+(2—\/§)5
@Nﬁ)ﬂ@-ﬁf

Expand the following in ascending power of x:
) 2+x-x")* i) (1-x+x%)" i) (I-x-x%)"

Expand the following in descending powers of x:

3
i) (x—l—lj
X
Find the term involving:
i) x*in the expansion of (3 — 2x)’

) (x> +x-1)

2

13
i)  x?inthe expansion of (x—ij
X

9
iii)  a*in the expansion of (%—aj

8. Mathematical Inductions and Binomial Theorem
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10.

1.

12.

13.

14.

iv)  y3in the expansion of (x—\/E)11

Find the coefficient of;

10
)  x°inthe expansion of (xz —ziJ
X

2n
ii)  x"inthe expansion of (xz —lj
X

10
Find 6th term in the expansion of (xz —21)
X

Find the term independent of x in the following expansions.

) (x—gj i (Jﬁ%j
x 2x

Determine the middle term in the following expansions:

. oY (3 1) 1y
) [;—7j i) (Ex_gj i) (2x—gj

3n
Find (2n +1) th term from the end in the expansion of (x—zij
X

i) (1+x2)3(1+12j
X

1.3.5...2n-1)
n!

Show that the middle term of (1+x)*" is= 2" x"

Show that: [n}{n}{n}r +£ n jzznl
1 3 5 n—1
n+l
Show that: [nJ+l(nJ+l(nJ+l(")+w+ ! ("]:2 —1
0) 2l1) 3l2) 4\3 n+1ln) n+1

version: 1.1
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8.4 The Binomial Theorem when the index n is a negative
integer or a fraction.

When n is a negative integer or a fraction, then

n(n2!— 1) N n(n—1)(n-2) e

(1+x)n=1+nx+ 3t

N n(n—1)(n- 2)'....(11 —-r+1) N
r!

provided |x|<1.

The series of the type

1+nx+

n(n—1) 2 n(n—1)(n-2) I
2!

3!
is called the binomial series.

Example 1: Find the general term in the expansion of (1+x)~when|x| <1

A=) B-rtD)

7!

Solution: 7 = (X

r+l

version: 1.1

8. Mathematical Inductions and Binomial Theorem elLearn.Punjab

_ED)345..042)

r!

1.2345..0+2) ,

BT

ri(r+1)(r+2) v

=D =

P P D(r+2)
' 2

=(-1)

8.5 Application of the Binomial Theorem

Approximations: We have seen in the particular cases of the expansion of (1+x)" that
the power of x go on increasing in each expansion. Since | x | <1, so

| X |r <| X |f0rr=2,3,4...

This fact shows that terms in each expansion go on decreasing numerically if | x | <1.
Thus some initial terms of the binomial series are enough for determining the approximate
values of binomial expansions having indices as negative integers or fractions.

version: 1.1
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Summation of infinite series: The binomial series are conveniently used for summation of

infinite series..The series (whose sum is required) is compared with

1+nx+

n(n—1) 2 n(n—1)(n-2) S
! 3!

to find out the values of n and x. Then the sum is calculated by putting the values of n and x

in(1T+x)".

Example 2: Expand (1 — 2x)"3to four terms and apply it to evaluate (.8)"2 correct to three

places of decimal.

Solution: This expansion is valid only if | 2x [<lor2| x|<1 or | x|<—, thatis

2! 3!
()., 450
2 3 3 5 3 3 3 3
=1 + 4x°) + 8
3 (%) 300 %)
zl_zx_i)ﬁ_l'z_s_L(g)ﬁ) —
33321
1.2 4. 40 5
3 9 81

Putting x =.1 in the above expansion we have

1/3

40

2 4., 40,
(1-2(1)" =1 6D g6 D
_po2 04 04 (40 X001 =04)
3 9 8l

~1-.06666—-.00444 —.00049 =1 .04159 .92841

8. Mathematical Inductions and Binomial Theorem
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Thus (.8)" ~.928
Alternative method:

13 _ . 2 3\3 > 3\ 3 3 3
(.8)" =(1-.2) _1_§+T(_.2) + Y (. .+

Simplify onward by yourself.

Example 3: Expand (8 — 5x)?*to four terms.

2 2
2 I 2
Solution: (8—5x)™" :[8(1—%)) T_g (1-%) P (83)—2(1_%) ’

2 +—X+ x4+ —x

1 5 5 25 40 125
=—1 X +...
12 9 64 81 8x64

1 5 125 , 625
=—+—x+ x°+ x4
4 48 2304 20736

-2/3
The expansion of (l—ng is valid when %x <1

version: 1.1
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5 g coefficient of x" =(=1)(=1)""'n+(=1)"(n+1)
or §| x|<l=|x |<§
=(-)'n+(-1)"(n+1)

Example 4: Evaluate /30 correct to three places of decimal.
=(-D"[n+(n+1)]

1
Solution: 3/30 =(30)"* = (27 +3)° =( 2 1
{ 3\1" Al 1) Example 6: If x is so small that its cube and higher power can be neglected, show that
= 27(1+—ﬂ =(27) (1+—j
I-x 1,

=3 1+l.l+
39 2!

DGR I e T G

- - 2 2!

2 3 2 L dL .
=3 1+l.1—1(l) +i(l) +...]=3 1+L—(Lj +... _
39 919 81\ 9 27 \27 1 1, 1 3,
| 1==x+—= .
2 2 8

~3[1+.03704 -.001372] = 3[1.035668] = 3.107004

—_ l—lx+§x2 + —lx+lx2 —lx2+
Thus /30 ~3.107 U278 27 4 g
Example 5: Find the coefficient of 7 in th ion of 1 —* o1 (3.1 1
xample 5: Find the coefficient of x” in the expansion o i) =1—(5+5jx+(§+———)x2+.“
Solution: 1_)62:(1—x)(1+x)‘2 1
~l-x+—x

=(—x+D[1+ (—2)x+wx2 g 224D o
2! r! Example 7: If mand n are nearly equal, show that
=(—x+ D1+ (=D2x+ (=D 3x* +..+ (=) x(r+Dx" +...]

(5m—2njl/3 m n+m
+

=(—x+D[1+(=D2x+(=1)*3x" +...+ (=D)""'nx"" + (=1)"(n +Dx" +...] 3n Tm+2n 3n

version: 1.1 version: 1.1
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Solution: Putm=n+h(here hissosmall thatits square and higher powers can be neglected)

LH.S _]E Sm—2n jm (S(n +h)—2n jm (371 +5h jm
S 3n 3n 3n

~l+— (neglecting square and higher powers of h) (i)

m n+m
+

R.H.S. =

m+2n 3n

_n+h +2n+h
3n+h 3n

ICEY)I (2 ij
3n 1+£ 3 3n
3n

-1
:(n+h)i(1+£J +(z+ij
3n 3n 3 3n

Q

1+3—h (neglecting square and higher powers of h) (ii)
n

From (i) and (ii), we have the result.

version: 1.1

Example 8: Identify the series: 1+%+£+;’3—'5+... as a binomial expansion and find its sum

3.6 6.9

Solution: Let the given series be identical with.

1+nx+

nn=1) o nn=D-2) , (A)
: X

We know that (A) is expansion of (1+x)” for | x < 1 and n is not a positive integer. Now
comparing the given series with (A) we get:

(i)

nx =

3

n(n—l)x2 1.3

2! 3.6 o

From (i), x= 1
3n

Now substitution of x:3L in (ii) gives
n

n(n—l)-(ijz 1 =D 1

1
2! 3n 6 21 9 6

1

or n—1=3n = n=——
2

Putting n :—% in (iii), we get

-1/2 -1/2
Thus the given series is the expansion of {1+(—§ﬂ or (l—zj

version: 1.1
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1

2" (1) e
(l 5} @ ®
NG

1(4) 13 (4) 135(4Y
Example 9: For y=—|+—| ——|+ —| +
2\9 ) 2721\ 9 2°.3119

show that 5y + 10y -4 =0

2 3
Solution: y:l(ﬁj ﬁ(i} ﬁ(i} (A)
2\9) 4219 8.3\ 9

Hence the sum of the given series

Adding 1 to both sides of (A), we obtain

2 3
L y:Hl(i}ﬁ(ij +ﬁ(ij b (B)
2\9) 4219 8.3\ 9

Let the series on the right side of (B) be identical with

1+nx+ n(nz'— D XX+ n(n—-1)(n-2) X+

3!
which is the expansion of (1+x)"for | x | <1 and nis not a positive integer. On comparing
terms of both the series, we get

1 (4 .
nx —5(5) (|)

n(n—l)xz _ 13 (ijz (i)
ol 22119
From (i), x =2 (i)
On

Substituting x:9i in (i), we get
n

316
8 81

n(n—l)(ljz 316  n(n-1) 4

==.— Or
2 On 8 81 2 8ln’

version: 1.1

(@)

or 2(n-1)=6n or n—1=3n:>n=—%

PUtting 1 = _% in (iii), we get

-1/2 -1/2 1/2
ThUS 1+y=(1—ij :(éj :(2)
9 9 5

3

5

or J5(1+y)=3 (iv)
Squaring both the sides of (iv), we get
5(1+2y+y>)=9

or 5y?+10y-4=0
Exercise 8.3

1.  Expand the following upto 4 terms, taking the values of x such that the expansion in
each case is valid.

) (1-x)" i)  (1+2x)" i)  A+x)™" iv) (4-3x)"

-0' JI+2x

v) (8-2x) vi) (2-3x)" vii) 1+ x) 1—x

(4+2x)1/2 1 1

ix) . X)  (I+x-2x")  xi) (1-2x+3x°)

version: 1.1

=)



8. Mathematical Inductions and Binomial Theorem elLearn.Punjab 8. Mathematical Inductions and Binomial Theorem elLearn.Punjab

2. Using Binomial theorem find the value of the following to three places of decimals. 5. Ifxissosmall thatits cube and higher power can be neglected, then show that

/55 1 1

: . 03)2 1033 : ;

) 99 i) (.98) i)  (1.03) V) 65 1 m~l——x——x i) 1+x z1+x+lx2

. | 8 I-x 2
Y 17 vi 31 Vil viii) —
) ) ) /998 ) R/252

NG B i 1 6. Ifxisverynearly equal 1, then prove that px” —gx? ~(p — q)x"™

ixX) — X) (.998) 3 Xi) - xii)  (1280)*
V8 V486 7. Ifp—gis small when compared with p or g, show that

3.  Find the coefficient of x” in the expansion of

RCn+D)p+(2n-1))q z[p+qjl/n

) 1+ x° i) (1+x)° i) (1+ x)’ 2n-Dp+(2n+1)g 2q
(1+x)° (1-x)° (1-x)°
/
: (1+x)° > s > 8. Showthat |—™ — : o ntN where n and N are nearly equal.
\Y) () V) (I-x+x" —x"+..) 2(n+ N) n—N  4n
4. If x is so small that its square and higher powers can be neglected, then show that 9. Identify the following series as binomial expansion and find the sum in each case.
2
Ve TEL B i)
I+x 2 1—x 2 2 214\ 4 318 \ 4
=5l —G) )
i) O+70)" -(16+30)" 1 17 2) 246\2
4+ 5x 4 384" i) 143,35, 357 |
48 4.8
: a4+ x 25 :
\Y) SR2+—X iv) _ll _3(1J _13 ( ) +
(1-x) 4 23 24\3) 246
(1+x)"2 (4 -3x)*" 5x
V) 8+5x)" ~4 1‘? 10. Use binomial theorem to show that 1+l+£+ 1.3.5 +o.=A2
4 4.8.12
2 3
vi (1-x)"*(9 —4x)" 3 ﬂ 1. Iﬂy:% %?FG) %'SFGJ ..., then prove that y* +2y-2-0
(8+3x)"” 2 48 ' -
I 131 1351 2
12. If 2y=+22 vt T3 e then prove that 4y° +4y—-1=0
y J4d-x+@8-x)" 1 : '
Vvii) = ~2——x ) )
(8-x) 12 13. |f-y=% %%(%j %is-(%j ... then prove that y>+2y-4=0
version: 1.1 version: 1.1
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9.1 Introduction

Trigonometry is an important branch of Mathematics. The word
Trigonometry has been derived from three Greek words: Trei (three), Goni (angles) and
Metron (measurement). Literally it means measurement of triangle.

For study of calculus it is essential to have a sound knowledge of trigonometry.

It is extensively used in Business, Engineering, Surveying, Navigation, Astronomy,
Physical and Social Sciences.

9.2 Units of Measures of Angles

Concept of an Angle

Two rays with a common starting point form an angle. One of the rays of angle is called
initial side and the other as terminal side. The angle is identified by showing the direction of
rotation from the initial side to the terminal side.

An angleis said to be positive/negative if the rotation is anti-clockwise/clockwise. Angles

are usually denoted by Greek letters such as a (alpha), B (beta), ¥ (gamma), O (theta) etc.
In figure 9.1 LZAOB is positive and ZCOD is negative.

B Tﬁﬂ'ﬂmal S-i{lﬂ ':-1 Fr ;
0 —p Initial side
s
Anti-clockwise Clockwise
rotation rotation
a
() f/ Initial side 1) & Terminal side
figure 9.1

There are two commonly used measurements for angles: Degrees and Radians. which
are explained as below:

9. Fundamentals of Trigonometry elLearn.Punjab

version: 1.1
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9.2.1. Sexagesimal System: (Degree, Minute and Second).

If the initial ray OA4 rotates in anti-clockwise direction in such a way that it coincides
with itself, the angle then formed is said to be of 360 degrees (360°).
One rotation (anti-clockwise) = 360°

% rotation (anti-clockwise) = 180° is called a straight angle

% rotation (anti-clockwise) = 90° is called a right angle.

Terminal side

P x

S 0=
Initial side A4 Terminalside ¢ Initial Side [nitial Side A

360° 180° -\%‘
@ Terminal side : “ P\

1 rotation =360° % rotation = 180° % rotation = 90°

1 degree (1°)is divided into 60 minutes (60") and 1 minute ( 1) is divided into 60 seconds
(60"). As this system of measurement of angle owes its origin to the English and because 90,
60 are multiples of 6 and 10, so it is known as English system or Sexagesimal system.

Thus 1 rotation (anti-clockwise) = 360°.
One degree (1°) = 60’
One minute (1') = 60"

0.2.2. Conversion from D°M’S”to a decimal form and vice versa.

() 1630 = 165 (As30 :15 0.5%)

version: 1.1
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(i) 4525 = 4515 (0.25° i
100

I

15'
. )

oN
4>|‘|Ca,

Example 1: Convert 18° 6' 21" to decimal form.

Solution: 1'= i and 1” L !
60 60 60x60
et (1 1
So18 6" 21" =H8 6] +—| 21
60 60 x 60

= (18 + 0.1 + 0.005833)° =18.105833°

Example 2: Convert 21.256° to the D° M' S" form

Solution: 0.256° =(0.256)(1")
=£0.256)(60')  15.36'
and 0.36' =(0.36)(1)

=£0.36)(60") 21.6"

Therefore,
21.256°= 21°+ 0.256°
=21° + 15.36'
=21"+15 + 0.36'
=21"+ 15"+ 21.6"
=21°15' 22" rounded off to nearest second

9.2.3. Circular System (Radians)

There is another system of angular measurement, called the Circular System. It is

most useful for the study of higher mathematics. Specially in Calculus, angles are measured

in radians.
Definition: Radian is the measure of the angle subtended at the center of the circle by an

arc, whose length is equal to the radius of the circle.

Consider a circle of radius r. Construct an angle Z40B at the
centre of the circle whose rays cut off an arc 4B on the circle whose
length is equal to the radius r.

Thus mZAOB = 1 radian.

9.3 Relation between the length of an arc of a circle and the
circular measure of its central angle.

Prove that 6 = !
r

where ris the radius of the circle J, is the length of the arc and @ is the circular measure

of the central angle.
2r ,5'4__-"‘\\
B -
/
E{Hi-dfan
) )

Proof:
A

g

By definition of radian;
An angle of 1 radian subtends an arc 4B on the circle of length = 1.r

An angle of % radian subtends an arc 4B on the circle of length= %.r

An angle of 2 radians subtends an arc 4B on the circle of length = 2.r
..An angle of 6 radian subtends an arc ABon the circle of length=0.r

= ;173:0.1'

version: 1.1
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~N

Alternate Proof
Let there be a circle with centre O and radius r. Suppose that length of arc 4B =1 and

the central angle mZ40B=6 radian. Take an arc AC of length = .
By definition m£40C=1 radian.

We know from elementary geometry that measures of central angles of the arcs of a
circle are proportional to the lengths of their arcs.

m/AOB  mAB
- =

m/AO0C  mAC

0 radian /
= = —
1 radian r
= 0 = ‘

Thus the central angle 6 (in radian) subtended by a circular arc of length I is given by

0 = i, where r is the radius of the circle.
r

Remember that rand [ are measured in terms of the same unit and the radian measure
is unit-less, i.e., it is a real number.

For example, if r=3 cm and =6 cm

then 6 = L_ 8. 2
9.3.1 Conversion of Radian into Degree and Vice Versa

We know that circumference of a circle of radius ris 2zr =(/), and angle formed by one
complete revolution is 8 radian, therefore,

g="
r

version: 1.1
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N 9:27zr
r

= 0 =2rxradian

Thus we have the relationship

27 radian = 360°
= sxradian = 180°
= 1 radian = 180 ~ 180 ~ 57.296°
T 3.1416
. T )
Further 1 = ——radian.
~ 3.1416 ~ (0.0175 radain
180

Example 3: Convert the following angles in degree:
. 2 . .. .
(i) 3 radain (i) 3 radians.
Solution: (i) 277[ radains :%(ﬂ radain) = %(1 80°) 120°
(i) 3 radains =3(1 radain) = 3(57.296°) ~171.888°

Example 4: Convert 54° 45 " into radians.

Solution: 54°45" = 54£ = 54é 219
60 4 4
219
= 2
2 1)

Circumference 2nr

03

O,

version: 1.1
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Example 7: Find correct to the nearest centimeter, the distance at which a coin of diameter
219 ‘1" cm should be held so as to conceal the full moon whose diameter subtends an angle of

~ ——(0.0175) radinas
4 31" at the eye of the observer on the earth.

~ 0.958 radains.
Most calculators automatically would convert degrees into radians and radians into

degrees.
o]

Ohbserver Moon

Example 5: An arc subtends an angle of 70° at the center of a circle and its length is
132 m.m. Find the radius of the circle.

Solution: Let O be the eye of the observer. ABCD be the moon and PQSR be the coin, so that

Solution:
31416 70 1 APO and CSO are straight line segments.
70°=70 130 radains =@(3.1416)radam Eradams. (r 3.1416) We know that mPS =1 em, mZAOC = 31
1 Now since mZACOEm POC) is very very small.
0 = - radan and 7 132m.m. PS can be taken as the arc .of the circle with centre O and
radius OP.
0 = ! = r—i— 132><2—108mm 31x7
T 0 11 o Now OP=r ,I=1cm , 6=31 = radains
60x180
Example 6: Find the length of the equatorial arc subtending an angle of 1° at the centre of /
the earth, taking the radius of the earth as 6400 km. 0 = =
Solution: ' =~ -~ radains 3.1416 radain roo= L = 1x60x180 ~ _00x180 ~ 110.89 cm.
180 0 3lxx 31x3.1416
3.1416 Hencethe coinshould be held atan approximate distance of 111 cm. from the observer’s
r = and 7= 6400 km.
180 eye.
| Note:Ifthe valueof  is o gve, we sl take ==3.1416.
Now 6 = —
r
= [ =rf = 6400xﬂ ~ 111.7 km
1800000

version: 1.1
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Exercise 9.1

Express the following sexagesimal measures of angles in radians:

) 30° i)  45° i)  60° iv) 75°

v)  90° vi)  105° vii)  120° viii) 135°

ix) 150° X) 10° 15 xi) 35720 Xii) 75 6' 30"
xiii) 120" 40" Xiv) 154°20" xv) O° xvi) 3"

Convert the following radian measures of angles into the measures of sexagesimal
system:

. T . T T . T T
| — i — I — v — Y —
) 3 ) ¢ ) 1 ) 3 ) 5
. 2 .. 3 5 . r Or
Vi — Vil — viii — IX — X —
) 3 ) 4 ) 6 ) 12 ) 5
. 117z . 137 177 . 257 197
xi) — X)) — xil) — xiv) — Xxv) ——
27 16 24 36 32

What is the circular measure of the angle between the hands of a watch at 4 O’clock?
Find 8, when:

)] I = 1.5cm, r = 2.5cm
i) I = 3.2m, r =2m
Find I, when:

) 6 = = randains, r = 6Ccm

i) 0 =65 20 r = 18mm
Find r, when:

. 1 .

i) I=5cm, 0 = 5 radian
i) =56 cm, 0 =45

What is the length of the arc intercepted on a circle of radius 14 cms by the arms of a
central angle of 45°?
Find the radius of the circle, in which the arms of a central angle of measure 1 radian

version: 1.1

cut off an arc of length 35 cm.

10.

1.

12.

13.

14.

15.

16.

17.

A railway train is running on a circular track of radius 500 meters at the rate of 30 km
per hour. Through what angle will it turn in 10 sec.?

A horse is tethered to a peg by a rope of 9 meters length and it can move in a circle
with the peg as centre. If the horse moves along the circumference of the circle, keeping
the rope tight, how far will it have gone when the rope has turned through an angle of
70°?

The pendulum of a clock is 20 cm long and it swings through an angle of 20° each
second. How far does the tip of the pendulum move in 1 second?

Assuming the average distance of the earth from the sun to be 148 x 10° km and the
angle subtended by the sun at the eye of a person on the earth of measure 9.3 x 103
radian. Find the diameter of the sun.

A circular wire of radius 6 cm is cut straightened and then bent so as to lie along the
circumference of a hoop of radius 24 cm. Find the measure of the angle which it
subtends at the centre of the hoop.

Show that the area of a sector of a circular region of radius r is 1 r*6, where 0 is the
circular measure of the central angle of the sector. 2

Two cities A and B lie on the equator such that their longitudes are 45°E and 25°W
respectively. Find the distance between the two cities, taking radius of the earth as
6400 kms.

The moon subtends an angle of 0.5° at the eye of an observer on earth. The distance
of the moon from the earth is 3.844 x 10° km approx. What is the length of the diameter
of the moon?

The angle subtended by the earth at the eye of a spaceman, landed on the moon, is
1° 54'. The radius of the earth is 6400 km. Find the approximate distance between the
moon and the earth.

9.4 General Angle (Coterminal Angles)

There can be many angles with the same initial and terminal sides. These are called

coterminal angles. Consider an angle ~POQ with initial side OP and terminal side 00 with

version: 1.1
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vertex O. Let m/ZPOQ =0 sadian, where 0 6 27«

o Q o
i O+2n @ +4n
0 == {J +— J —
P P P

Now, if the side OQ comes to its present position after one or more complete rotations
in the anti-clockwise direction, then mZPOQ
will be

i) 0 + 2, after one revolution i) 0 + 47, after two revolutions,

o Q 0
7] G- 2n 0 - 4n
0 i () - ‘) -
P o P

However, if the rotations are made in the clock-wise direction as shown in the figure,
m/POQ will be:

i) 0 -2x, after one revolution,

i) 6 -4, after two revolution,

It means that OQ comes to its original position after every revolution of 2z radians in
the postive or negative directions.

In general, if angle @ is in degrees, then 6 + 360k where ke Z, is an angle coterminal
with 4. If angle @ is in radians, then 6 + 2kz where k € Z, is an angle coterminal with 6.

elLearn.Punjab

— General angleis 6 +2kx, keZ,

9.5 Angle In The Standard Position

An angle is said to be in standard position if its vertex lies at the origin of a rectangular
coordinate system and its initial side along the positive x-axis.
The following figures show four angles in standard position:

¥
LN \'{3 > N > x 01N > x
/ k’b\

An angle in standard position is said to lie in a quadrant if its terminal side lies in that
quadrant. In the above figure:

Angle « liesin T Quadrant as its terminal side lies is T Quadrant

Angle g lies in IT Quadrant as its terminal side lies is II Quadrant

Angle » lies in III Quadrant as its terminal side lies is III Quadrant

and Angle 4 lies in IV Quadrant as its terminal side lies is IV Quadrant
If the terminal side of an angle falls on x-axis or y-axis, it is called a

A
a0 180° 270° 360
N Py < £ > x {:_\ > x {:} >
v

quadrantal angle.
i.e., 90°, 180°, 270° and 360° are quadrantal angles.

9.6 Trigonometric Functions

Consider aright triangle ABC with £C =90" and sides a, b, ¢, as shown in the figure. Let
m/A =6 radian.

version: 1.1
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B

The side AB opposite to 90° is called the hypotenuse (hyp),

The side BC opposite to @ is called the opposite (opp) and ¢

the side AC related to angle 6 is called the adjacent (adj) i

o m

We can form six ratios as follows: 4 b ¢

a ba c ¢ gl

c ¢ b a b a

In fact these ratios depend only on the size of the angle and not on the triangle formed.

Therefore, these ratios are called trigonometric functions of angle ¢ and are defined as
below:

Sin & :Sinfd = — = ﬂ; Cosecant @ : =escO= < h_yp;
hyp a  opp

Cosine @ :Cosd = — = a—dj; Secant@ : secO= — h_yp;
hyp ad]
a opp b adj

Tangent @ :tand = — = ——; Cotangentd: cotd = —.
adj a  opp

We observe useful relationships between these six trigonometric functions as
follows:

1 1 sin @
cscld= —==; sec ¢ ; tand ;
sin@ cosf@ cosé@
cosé@ 1
cotld == — ; cot @ ;
sin@ tan @

9.7 Trigonometric Functions of any angle

9. Fundamentals of Trigonometry elLearn.Punjab

¥y
& 'P{.x-*.]',]
Now we shall define the trigonometric functions of any angle. /iy
Consider an angle ZXOP = 6 radianin # .2
- < ol B A
standard position.
Let coordinates of P (other than origin) on the terminal side of
v
version: 1.1

the angle be (x, y).

If » =\x*+y> denote the distance from O (0, 0) to P (x, y), then six trigonometric
functions of @ are defined as the ratios

sinf = = ; CscO# = r (y 0= ; tand (x 0)
r y
X r
cosd= —== ; secd = —x 0) ; cotd
r X

9.8 Fundamental Identities

(v 0

<% x <

For any real number 6, we shall derive the following three fundamental identities:

i) sin@+cos’0 = 1

i) 1+tan’@ = sec’d

i)  1+cot’@ = csc’ 0.
Proof:

(i) Refer to right triangle ABC in fig. ( I) by Pythagoras theorem, we have, Dividing
a’+ b?*= ¢ both sides by ¢?, we get

B
a b c’
PR 5 ’
ay (b} _ 0 [
NCR L d,
= (sin#)* +(cosf)’> =1 Fig.(1)

sin’@ +cos’@ =1

version: 1.1



9. Fundamentals of Trigonometry elLearn.Punjab 9. Fundamentals of Trigonometry elLearn.Punjab

i) Againasa’+b’>=¢?
Dividing both sides by 4%, we get

= All trigonometric functions are +ve in Quadrant I.

) ) , (i) If @ liesin QuadrantIl, then a point P(x, y) on its terminal side has negative x-coordinate.
Z—z + 12_2 - % and positive y-coordinate.
2 2 . y X Y
a 1 =€ S.ostaf==  we=20,cos8 — = ve <0, tand==  ve <0
= b +1= b r r X
(iii) If @ liesin QuadrantIII, then a point P(x, y) on its terminal side has negative x-coordinate.
= (tan#)’ +1=(sech)’ and negative y-coordinate.
l+tan’@ =sec’ @ 2
(2) " sin051=< ve 0,=e0s& X ve <0, tan¢9=Z|r= w O
r r X
iii) Again as a® + b* = ¢? , . . . : : " :
(i) g , ¢ . ¢ (iv) If @ liesin QuadrantIV, then a point P(x, y) onits terminal side has positive x-coordinate.
Dividing both sides by a2, we get . .
and negative y-coordinate.
a’ b’ c’
St === . sing=2 a =
a a a S.osinB===< ve 0 *cos&> — ve 6 tanfd = ve O
r r
, , These results are summarized in the following figure. Trigonometric functions
—~ 1 + (ﬁj _ (E) mentioned are positive in these quardrants.
a a
= 1 + (cotd)’ =(csch)’ Y,
1+cot’@ =csc’ O (3) {sinf} >0 IT Quad | Quad Alltve
csch =0
(
_ {IE"Q}D 111 Quad IV Quad {CGS '>0
cott) =0 sec# >0

9.9 Signs of the Trigonometric functions it is clear from the above figure that

sin (—@) = —sin 6, csc(—6)=—cscl
If 6 is not a quadrantal angle, then it will lie in a particular quadrant. Because
— . o _ _ _ _ cos(—0)= cos¥, sec(—0)= secd
r = yx°+y* is always positive, it follows that the signs of the trigonometric functions can
be found if the quadrant of 0 is known. For example, tan(—6) = —tan®, cot(—0) =—cotd
(i)  If @ liesin QuadrantTI, then a point P(x, y) on its terminal side has both x, y co-ordinates
+ve
version: 1.1 version: 1.1
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Example 1: If tan 9= 8 and the terminal arm of the angle is in the III quadrant, find the

values of the other trigonometric functions of 4.

Solution:
tand = ﬁ S.ocotf = ! :1—5
15 tan @ 8
2
sec’d = l+tan*O= 1 + ﬁ = 1+ﬁ:&
15 225 225
sec@d =+ & 1—7
225 15

The terminal arm of the angle is in the lll quadrant where sec @ is negative

17

seed = —
15

1 1 15

sec 17 17

Now cosf =

15
sinfd = tan@.cesf 85
15\ 17
sinéd = 8
17
and «cscfl = ,1 =L: 7
sin@ 8 8

17

Example 2: Find the value of other five trigonometric functions of 9, if cosezﬁ and the
terminal side of the angle is not in the I quadrant.

9. Fundamentals of Trigonometry elLearn.Punjab
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Solution: The terminal side of the angle is not in the I quadrant but cos @ is positive,
.. The terminal side of the angle is in the IV quadrant

Now secld = ! —L—B

cosd 12 12
13
2
sin@ =1 cos’#® 1 (i_zj S, 44 25
13 169 169
s = >
13

As the terminal side of the angle is in the IV quadrant where sin @ is negative.

sinrd = el
13
cosec 0 = .1 = ! :—2
sin@ 5 5
13
2
tan @ = smé_ 13 _ _ 3
cosd 12 12
13
cotld = Lt _ 12
tan @ S5 5
12

Exercise 9.2

1.  Find the signs of the following:
) sin 160° i) cos 190° i)  tanll15°

V)  sec245° V) cot 80° vi)  cosec297°

version: 1.1
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2.

Fill in the blanks:

)] sin(=310") = .... sin310° i) cos(=75°) = ...cos75
iii)  tan(—182°) =....tan 182" iv)  cot(-173")=....cot137
V) sec (—216°) = ...sec 216° Vi)  cosec(—15") = ...cosec15’

In which quadrant are the terminal arms of the angle lie when

) sin @ <0 and cos @ >0, i) cot@>0 and cosecd >0,
i) tan@<0 and cos@ >0, iv) secd<0 and sin@<0,
V) cotd>0 and sin <0, Vi) cos@<0 and tan @ <0?

Find the values of the remaining trigonometric functions:

i) sin 0:% and the terminal arm of the angle is in quad. L.

i)  cos 9:% and the terminal arm of the angle is in quad. IV.

iii)  cos 9:—? and the terminal arm of the angle is in quad. IIL

iv) tan =-—— and the terminal arm of the angle is in quad. II.

V)  sin 6?:—L and the terminal arm of the angle is not in quad. III.

2

Find coté?:%s and the terminal arm of the angle is not is quad. I, find the values of

cos @ and cosec 4.

m* +1

If cosec 8 =

5 and m>0(0<9<%), find the values of the remaining trigonometric
m

version: 1.1
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ratios.
7. If tan H:% and the terminal arm of the angle is not in the III quad., find the values of

csc’ @ —sec’ 0
csc’ @ +sec’ @

8. If coté?:g and the terminal arm of the angle is in the I quad., find the value of

3sinf@+4cos b
cos@—sinf

9.10 The values of Trigonometric Functions of acute angles 45°,

30° and 60°
B
Consider a right triangle ABC with mZC =90° and sides
a, b, c as shown in the figure on right hand side. < a
=
A4 b £

(a) Case 1when mzA4=45 :% randian

then ms/B =45

= AABC is right isosceles.
As values of trigonometric functions depend only on the angle and not on the
size of the triangle, we can take a=b =1
By Pythagoras theorem,
cc=a> +b’
=  =1+1=2

= =2
. Using triangle of fig. 1, with a=b=1 and c = \/2

version: 1.1
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sin45° = — = L, €sc 45’ = 1 ;
c \/5 sin45

cos 45° = b = L; sec4sy” = 1 ;
c \/5 cos 45

tan 45° = 4 _ 1 ; <ot 45 = 1
b tan 45

(b) Case 2: when mz4 =30 =% randian
then m«B =60’

By elementary geometry, in a right triangle the measure of the side opposite to 30° is
half of the hypotenuse.

Letc=2thena="1
By Pythagoras theorem , a*+b%=¢*

= b'=c"-d’
=4-1
=3

—b=43

Using triangle of fig.2, witha =1, b=+/3 and c=2

sin 30° :E:l; cse30° _:1
c 2 sin 30°
cos30° =é:£; see30° =1 2 ;
c 2 cos30° /3
tan30" = 4 :L; =cot30° = !
NE) tan30°

(c) Case3: when mz4=60 :g radian, then m£B =30’

By elementary geometry, in a right triangle the measure of the side opposite to 30° is

(=)

version: 1.1
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half the hypotenuse.
Letc=2thenb="1
By Pythagoras theorem,

a’ +b* =c?

= a’'=c’-b°

—4-1=3
=a=3
Fig (3)
Using triangle of fig.3, with a=+/3,,b=1and c=2
sin60° =< :ﬁ; ecsc 60° —= ! 2 ;
c 2 sin 60° /3
cos 60’ _b :l; sec60° ! ;
c 2 cos60°
a 1 1
tan 60° =— = \/g; cot 60° = .
b tan 60° \/5
Example 3: Find the values of all the trigonometric functions of
. . —1r 197
| 420° Il — i) —
() (i) 1 (iii) 3
Solution:  We know that 6+2kr =6, where keZ
(i) 420° = 60°+ 1(360°) (k=1)
= 60°
. sin 420° = sin60° :ﬁ; csc420° i
2 3
cos 420" = cos60° :% ;= sec420° 2
tan 420° = tan60° =+/3; = cotd20" ——
J3
version: 1.1
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i) £ = %+(—1)27r (k =)

z
3

o 3
o) 5

\_/

. (197

C.osin sin

&3 :

197 T 1
=cos(—)=— ; =

[3] -1

() m(5)

9.11 The values of the Trigonometric Functions of angles
0°, 90°, 180°, 270°, 360°.

When terminal line lies on the x— axis or the y— axis, the angle @ is called a quadrantal

angle.

Now we shall find the values of trigonometric functions of quadrantal angles 0°, 90°,

180°, 270°, 360° and so on.
(@) When 0 =0°

version: 1.1

The point (1,0) lies on the terminal side of angle 0°

SO r=4x"+y =1

c.sin 0 =

cos(0’ =

tan 0° = 2 9=O = cot(=
X 1

(b) When 6 = 90°

Yy
The point (0, 1) lies on the terminal side of angle 90°. I

= x=0 and y=1

SO r =4x"+)y =1
=SIn W’ = y 1 I
r 1
c0s90° 2 :Q:O;
r 1
tan90° =2 = | — (undefined);
x 0

(c) When 6 =180°

- P
0 Angle 0° P(1, 0)

1 (undefined)

% (undefined)

L P(1, 0)

v\%"
> x

Q0
csc90° = L =1
sin90°
1 1
sec90° = —  — (undefined);
cos90” 0
cot00= = Y o
y 1
180°
e /_\ > x
P(-1, 0) 9]

The point (-1, 0) lies on the terminal side of angle 180°.

= x=-1 and y=0

version: 1.1
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sin 1862 =2 0 0; csc180: L ; (undefined);
ro1 y 0
. x -1 ,or 1
cosl80"'=— — 1 =ecl180° — — 1;
ro1 x -1
tan 180° =2 = i =0; eot 80© 1 (undefined).
x - y 0

(d) When 6 =270°

The point (O, -1) lies on the terminal side of angle 270°.

b X
= x=0 and y=-
SO r=yx"+y =1 P(0, -1)
: | A |
Sosm220 == — I; - escx0'=— — 1
ro 1 y -
x 0 . 1
cos270°=—=— =0; sec270° — —(undefined);
o1 x 0
tan270° =2 = ! (undefined): cor270= X =% o,
x 0 y -1
Example 4: Find the values of all trigonometric functions of
() 360° (ii) % (i) Sz
Solution: We know that 8 +2kzr =6, where keZ
(i) Now 360°=0°+ 1(360°), (k=1)
=(Q°
version: 1.1
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sin 360° = sin0° =0; csc 360° is undefined;
1
cos0’

cot 360° 1s undefined.

cos 360° = cos0’ =1; = sec360° 1

tan 360° = tan(’ =0;

(i)  We know that @ +2kz=0 , where k e Z

Now —% = 37”+(—1)27r (k =)

) T . (37 Vs
S.o8In | —— |=S csc|l —+ -1, =
(5)- (2) [ 5}
cos( zj: (3—”j sec( zj 1s undefined;
2 2
tan Z tan 3 1s undefined; cot z 0
2 2 2

(i) Now 5z =7 227) (kK 2)

=7
. sin 57 = sin 7 =0; csc Sz is undefined;
cosSm = cosxw I; sec5r I;

tanS7z = tanz =0; cot Sz 1s undefined;

Exercise 9.3
1.  Verify the following:

(1) sin60° cos 30° — cos 60° sin 30° = sin 30°

(i)  sin® 2 osin? g tan? L= 2
6 3 4

@)
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(i) 2sind5 +Lcosecds = o
2 2

(iv) sinzzﬂzsinzf:sinz?ﬂ:sinzgz1:2:3:4.

2.  Evaluate the following:

tanﬁ —tan£ l—tanzﬁ
i) 3 6 i) 3
T T /1
1+tan—tan— 1+tan” —

3 6

3.  Verify the following when 6 = 30°, 45°

i) sin 20 = 2sin Ocos 6 i)  cos26= cos’@—sin’ @
i) cos20= 2cos’ 6 -1 iv)  cos260=1-2sin’@
V) tan 260 = ﬂ

l1-tan" @

4. Findx, if tan? 45° — cos? 60° = x sin 45° cos 45° tan 60°.
5. Find the values of the trigonometric functions of the following quadrantal angles:

) .. 5

I — I -3 i —

) T ) T ) 27z

) 9 . o
V) —Ezz V) — 157 vi) 1530
vii) - 2430° viii) %n ix) % .

6. Find the values of the trigonometric functions of the following angles:

I) 390° II) —330° III) 765°
Iv) —-675° V) _—177z Vi) 13 Vs

3 3
vii) %ﬂ viii) ‘?71 . i)  -1035°

elLearn.Punjab

9.12 Domains of Trigonometric functions and of Fundamental
Identities

We list the trigonometric functions and fundamental identities, learnt so far mentioning
their domains as follows:

(i) sin € , forall 8eR

(i)  cos@ , forall OeR

(iii)  csc €= '1 = forall & R buted nrx, n Z
sin @

(iv) sec 6= ! S forall 6 R but & (2n+lj”, n Z
cos & 2

v tno="Z L Grai o Rebu 0 (20 VE, 0 z
cosd 2

(vi) cot(9=C_OSH g, forall & R but & nx, n Z
sin 6

(vii) sin*@+cos’ =1 , « forall & R

T

(viii) 1+tan® @=sec’d #foratl & R bat 0 (2n 1)5, n 7

(iX) 1+cot’@=csc’ O e, ferall & R buted nr, n 7

Now we shall prove quite a few more identities with the help of the above mentioned
identities.

Example 1: Prove that cos® 8 —sin® 8 = cos® @ —sin” 9, for all 9 R

Solution: L.H.S = cos*@—-sin* @

version: 1.1
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(cos2 0)2 —(sin2 0)2
(6082 6 sin’ 9)(0—032 6 sin’ 9)

(1) (cos2 0 —sin’ 49) (o sin’ @ cos’ O 1)
cos’ @ —sin’  =R.H.S.

Hence cos* @ —sin* @ =cos®> @ —sin’ 0

Example 2: Prove that sec® 4 + cosec® 4 = sec’ A cosec’ A (Where A#%,neZ]

Solution: L.H.S = sec? 4+ cosec’ 4

1 1 sin® 4 + cos® 4
- I 2 2
cos"A sin“A cos Asin” 4
1 . 2 2
= | = ‘wsin“ 4 cos’A4 1
cos’ Asin* 4 [ ]
1 1

cos’ A sin’ A
=—sec’ A.cosec> 4 R.H.S

Hence sec’? A+ cosec® A=sec” A.cosec® A.

Example 3: Prove that 1_5%1“9 =sec 0 —tan 6, where @ is not an odd multiple of z.
1+sind 2
Solution:
LHS. = [ —5nd
1+siné
= \/ l—s%nH \/ l—s%né’ (rationalizing.)
I+sin@ V1-siné

version: 1.1
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_ [(1-sin@)
- 1—sin’ @
- (1—sint9)2 1—sin @
cos’ @ cos 0
= I —Sme:secﬁ—tanH:R.H.S
cos@ cos@
Hence 1—s%n6? =sec & —tan 6.
1+sinéd

Example 4:  Show that cot*d + cot® @ = cosec* 6 —cosec” 6, where @ is not an integral multiple
of Z .
2

Solution:

L.H.S. = cot*@+cot’ 6
=+cot’H(cot’ O 1)

(cosec” @ —1)cosec’ 0

= cosec'd — cosec’d
= R.H.S.

Hence cot* @+ cot’@ = cosec’d — cosec?6.

Exercise 9.4
Prove the following identities, state the domain of @ in each case:

1. tan @ + cot@ = cosec @ secl 2. sec @ cosec @ sin @ cos @ =1

version: 1.1
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3. cos @ + tan @sin @ =sec &
5. sec’ @ —cosec’ @ =tan> @ —cot* 0
6. cot’ @ —cos’ @ =cot” @ cos’ 0

8. 2cos’f-1=1-2sin’0

cosf—sinf) _ cotd -1

10. — =

cos@+sinf cotd+1
2

12. ng_l:2cos29—1
1+cot” @

13. 1+Cosgz(cosec@+cot9)2
l—cos @

14. (secH—tané?)z:l_S%ne

1+sinéd

15. ﬂ:%in@cos@

1+ tan

l-sion®  cosd

16. = :
cos @ 1+sin @

17. (tan @+cot 0)’ = sec” O cosec’

18. tan 0 +sec 6 —1 = tan @ +sec @

tan @ —sec 0 +1

19. 1 1 1

1.

1

cosecf—cotd sin@  siné

cosec @ +cot @

cosec O + tan @sec @ = cosec@sec’

(sec @ +tan @) (sec @ —tan O) =1

2
cos® @ —sin? sz
1+tan” @

sin @
+cot & =cosec ¢

1+cosé@

9. Fundamentals of Trigonometry
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20. sin’@—cos’ @ = (sin @ —cos O)(1+sin Hcos H)

21. sin®@—cos’ @ = (sin’ @ —cos’ &) (1—sin” Hcos” 6)

22. sin®@+cos®H =1 3sin’ Hcos’ O

23. ! + L. 2sec’ 6

l+sin@ 1-siné

cos @ +sin 0 N cosf—sinf _ 2

24' . . - )
cos @ —sin & cos@+sinfd 1-2sin” @

version: 1.1
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10.1 Introduction

In this section, we shall first establish the fundamental law of trigonometry before
discussing the Trigonometric Identities. For this we should know the formula to find the
distance between two points in a plane.

10.1.1 The Law of Cosine

Let P(x,,y,) and Q (x,, y,) be two points. If “ d “ denotes the distance between them,

= \/(Xl _x2)2 +(n _y2)2

then, d :‘E

= \/(xz _x1)2 +(, _y1)2

i.e., square root o f the sum of square the difference of x-coordinates and square the
difference o f y-coordinates.

Example 1: Find distance between the following points:
i) A(3,8) , B(5,6)
i) P(cosx, cosy), Q(sinx, siny)
Solution:

) Distance :\E\:\/(s—sf +(8—6) =/4+4=8=22
= J(5-3) +(6-8) =/4+4=8=22

i) Distance = \/(cosx—sinx)2 +(cos y —sin y)?

= \/coszx+sin2x—2005x sinx +cos” y+sin’ y—2cosy siny

=\/2 2cosxsinx 2cosy siny

:\/2 2(cosxsinx cosy siny

10. Trigonometric Identities elLearn.Punjab
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10.1.2 Fundamental Law of trigonometry

Let o and B any two angles (real numbers), then

cos(ax — ) = cosa cosf+sina sin B
which is called the Fundamental Law of Trigonometry.

Proof: For our convenience, let us assume that o> > 0.
Consider a unit circle with
centre at origin O.
Let terminal sides o f angles a and B cut the unit circle at
A and B respectively. (oo, vim g
Evidently ZAOB=a-p
Take a point C on the unit circle so that
/XOC=m AGB -a f
Join A,B and C,D. .
Now angles a B and oo — [ are in standard position.
The coordinates o f A are (cos @, sin Q)
the coordinates o f B are (cos [3, sin 3)

Ejof, e B

Yona o - B - i

the coordinates o f Care (cosa — f3, sin a — 3)
and the coordinates o f D are (1, 0).
Now A4AOB and ACOD are congruent.

45| <[]

= 4B =|cD[

Using the distance formula, we have:

(cosa —cos ) + (sina —sin B)” =[(cos(a — B) — 1]’ +[sin(a — B) — 0T

[(SAS) theorem]

= cos’a+cos’ f—2cosa cos B +sin’ a +sin’ B —2sinasin B
=cos’(a — f)+1—-2cos(a — B) +sin’(a — )
= 2-2(cosacosf+sinasinfl) = 2-2cos(a—f)

Hence cos(a— )= cosacosf+sinasinf.

version: 1.1
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Suppose we know the values of sin and cos of two angles a and 3. we can find
cos (o — PB) using this law as explained in the following example:

Example 1: Find the value of cos—— .

Solution: As 215 = 4530 =Z_Z
4 6
VA T T T T
COS— = —_— cos—cos—+sm—sm—
12 (4 6] 4
13,11 ﬁ +1

RO

10.2 Deductions from Fundamental Law
1)  We know that:

cos(d — ) = cosacosf +sinasinf

Putting « =% in it, we get
cos(——ﬂj = cos%cosﬁ+sin§sinﬂ

= cos(%—ﬁ) = 0.cosf+ 1.sinpf ( cos% 0, sin% IJ

2)  We know that:

cos(¢—pf) = cosacosf+sinasinf

Putting ,B:—% in it, we get

ol a-(-2]] = cosa.cof -2} smasin 2)
©

version: 1.1
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= cos(a+%j = cosa.0+sin a.(-1) 3

cos(§+aj = -—sina (i)

3)  We known that

cos(%—ﬁ] = sinf [(i) above]
Putting ﬂ:%+a in it, we get
T («m . (7
cos| ——| =+a || = sin| —+«
5(50e))- (5
= cos(—a) = sin(%+a)

= Ccos @ = sin(%+aj {.- —cos€ a) cos a}

sin(%+aj = cosa (iii)

4)  We known that

cos(ax — ) = cosacos ff+sinasin ff

replacing g by -4 we get
cos[a — (=f)] = cosacos(—p) +sinasin(—f3)

{. cos(—pf) =cos B,sin(—f)=—sin [}

7 = |cos(a+ f) = cosacosff—sinasin

5)  We known that

cos(a+ f) = cosacosff—sinasinf

. T
replacing a by 5+a we get

version: 1.1
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T V4 (7 :
cos{(5+aj+ﬁ} = cos(5+ajcos ﬁ—s1n(5+ajs1nﬂ

V4 : :
= cos[5+ (a +ﬁ)} = —sinacos f—cosasinf
= —sin(a+ ) = —[sinacosf +cosasin ]
sin(¢ + f) = sinacosf+cosasinf

6) We known that

sin( + f) = sinacosf+cosasin f3 [from (v) above]

replacing g by -g we get

sin(a — ) = sinacos(—pf)+cosasin(—f3)

wosin(=f)=-sinf
cos(—f) = cos 3

sin( — f) = sinacosff—cosasinff (vi)

7)  We known that

cos(a¢—f) = cosacosf+sina. sinf

Llet a=27 and f =06

cos2r—-60) = @os2z . cos @ sin2xz sin 0
cos2m =1
= 1.cos@+0 .sin @ ]
sin2z= 0
= cosd

8)  We known that sin(a — ) =sina . cos f—cosa . sin 3

sin(2r—60) = sin2x. cos@—cos 27 sin 6

10. Trigonometric Identities
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. sin2z7 =0
= 0.cosfé—-1 .sind
cos2r =1
= —sind (viii)
sin(a + sin cos ff + cos a sin
9) tan(a + ) = @+ p) = p ; : p
cos(a + f3) cosacos f—sinasin
sina cos 3 | cosa sin 3 Dividing
__cosacosf cosacospf neumerator and
cosacosf  sinasinf denuminator
cosacos S cosacosf —cos & cos B
tan o + tan .
tan(a + ) = P (ix)
1 -tana tan S
sin(a — ) _ sinacosf —cosasin f

10) tan(a - p) =

cos(a — f) cosacos ff+sinasin

sinagcos§ cosasin ff

Dividing
cosacosff cosacosf

= : . neumerator and
cosacos ff | sinasin p

denuminator
cosacos B cosacosf

tan(a— f) = tana —tan S (%)

1+ tan o tan S

10.3 Trigonometric Ratios of Allied Angles

The angles associated with basic angles of measure @ to a right angle or its multiples
are called allied angles. So, the angles of measure 90° + 6 ,180° + ¢, 270° + 9,360° + @, are

known as allied angles.

Using fundamental law, cos(a - ) =cos a cos § +sin a sin § and its deductions, we

derive the following identities:

O,

version: 1.1
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sin(z—ej:cosé ,=cos(—” :Qj sin @ tan(Z 0) cotd
2 2 2

sin(%+0) =cosf , cos(% 99 =mo , tan(% 99 <otd

sin(r—6@) =sinf , cos(x & <osf , tan(r 6) — taxd
sin(r +6) =-sind, cos(r & <esf , tan(r 6) Hané

sin (3—7[ - 6’}= cos@ , 005(3—7Z - 9}= sinf , tan(3—7Z - 0) =cotd
4 2 2 2
sin(%[ + 9}= cos@ , cos(%r + 0) =sinf , tan (377[ 9)[ <otd

{sin(Zﬁ—H)z—siné? , cosQr & cesf , tan(2r 6O) — tamé

sin(2z +60) =sin¥ ,=cos@xr =) cosf , tan(2zr ) tanf

1) If @ is added to or subtracted from odd multiple of right angle, the trigonometric
ratios change into co-ratios and vice versa.

i.e, sing—=cos, tang—=cot, secg—=coses
e.g. sin(%— 9) = cos) and 005(377[ 9} sind
2) If 6 isadded to or subtracted from an even multiple of % the trigonometric ratios shall

remain the same.

3) Sofar as the sign of the results is concerned, it is determined by the quadrant in which
the terminal arm of the angle lies.
e.g. sin(r—60) =sinf, tan(r+6)=tand, cos(2xr—6H) = cosb

version: 1.1

Measure of the Quad. B
angle i

T I S 4V All+ve
2

£+¢9 orr—6
2

11 bam+ve Liks -+

T+6 or 3—”—6’
2

37”“9 or 27 —6 Iv ¥

a) In sin(z—e),sin(£+0j,sin(3—”—6j and sin(3—ﬂ+6’)
2 2 2 2

odd multiplies of% are involved.

sin will change into cos.
Moreover, the angle of measure

i) (E—H will have terminal side in Quad.],
So sin %—9) =cos 0

i) (%+0 will have terminal side in Quad.II,

SO sin %+0j=cos g,

iii) (37”—0) will have terminal side in Quad.III,

O

version: 1.1
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So sin(%—@}: cosd;

iv) (377[+9j will have terminal side in Quad.lIV,
So sin(%[+6’}= cos 0.

b)  In cos(z —8), cos(w +86), cos(2r—6) and cos(2z +6) even multiples of% are involved.
cos will remain as cos.

Moreover, the angle of measure
i) (= —6) will have terminal side in Quad. I,
. cos(r—6)=—cos 0;

i) (7 +86) will have terminal side in Quad. III,
. cos(m +60)=—cos b,

iii) (27 —0) will have terminal side in Quad. IV:
. cos(2zr —60)=cos b,

iv) 2z +6) will have terminal side in Quad. I
. cos(2r+6)=cos 6.
Example 2: Without using the tables, write down the values of:

i) cos315° i) sin540° iii) tan (-135°) iv) sec(-300°)

Solution:

)] cos315° = co0s(270+45) = cos(3x90+45)" =+sin45" = L
V2

i) sin 540° = sin(540+0)° =sin(6x90+0)" =+sin0 =0

i)  tan(-1359= tan#35" —tan(180 »45)— —tam(2 90 #5) ( tan4d5’) 1

iv)  sec(=300°) = sec300" = sec(360—60)" =sec(4x90—60) =sec60” =2

10. Trigonometric Identities elLearn.Punjab
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Example 3: Simplify:

sin(360° — @) cos(180° — A)tan(180° + )
sin(90° + @) cos(90° — @) tan(360° + 9)

sin(360° — @) = —sin 0, cos(180° & =esf
tan(180° +f)=tamé , = sin(90° &) cosd
cos(90° - @) =sin¥ ,= tan(360° &) tand

Solution: -

sin(360° — ) cos(180° — ) tan(180° + )  (—sin@)(-cosf)tanf
cosd.sinf . tanf

cos@ . sin@ .tan @

Exercise 10.1

1.  Without using the tables, find the values of:
i) sin(=780°) i) cot(—855%) i) csc(2040°)

iv)  sec(-960°) v)  tan(1110°) vi)  sin(=300°)

2.  Expresseach of the following as a trigonometric function of an angle of positive degree
measure of less than 45°.

) sin 196° i) cos 147° iii)  sin 319°
V)  cos 254° V) tan 294° vi)  cos 728
Vii)  sin(=625") Viii)  cos(—435") iX)  sin 150°

3. Prove the following:

i) sin(180° + ) sin (90 —a) = sinacosa
i) sin 780° sin 480° + cos120° sin30° = %
i)  c0s306" +co0s234° + cos162° + cosl8 =0

ivV)  cos 330" sin 600° + cos120° sin150° = 1

version: 1.1
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4. Prove that:
. 2 RY/4
sin“ (7 + 0) tan(2 + 9)

- (&l E B3

cos75" = cos(45" +30°) =cos45 cos30” —sin45°sin30°

cot’ (3; - (9)0082 (7 —6)coses(2x — 0)

cos(90" + @)sec(—O)tan(180° — O)

sec(360" — A)sin(180° + &) cot(90° — 0) =1 [ 1 )[\/g] ( 1 )(lj \/5_1

i)

5. Ifa, 3,y are the angles of a triangle ABC, then prove that 2\ 2 L2 N\2)” 22
i) sin(a + ) = siny i) cos(az’gj = sinL an75 = tan(45° +30°) = tan45° + tan30
1 —tan45" tan30°
i)  cos(a+pf) = cosy iv)  tan(a+ f)+tany =0.
1
- - - .- 1+—
10.4 Further Application of Basic Identities _ BB+l
-1 V3l
Example 1: Prove that J3
. . _ .2 i .
sin(le + f) sin(d— ) = sin"a—sin”f (1) o 1 Sl
= cos’fB—cos’a (if) o0 ~ tan75 341
Solution: L.H.S. = sin(a + f) sin(a — )
= (sinacosf cosasinf)(smnacosf cosasinff) . 1 2\2 . 1 242
coses 75" = — = and sec75 = =
sin75"  \3+1 cos75  f3-1

=-sin’acos’ B cos’ asin’ f
= sin’ (1 —sin® B) — (1 —sin’ a)sin’
cosll’ +sinll’

= sin® @ —sin” asin® f —sin” f + sin” asin” Example 3: Prove that: = tan56".
cosll’ —sinl 1’

= sin*a —sin’ S (i)
= (1—cos’a)—(1—cos’ ) Solution: Consider
= 1—cos’a —1+cos’ ° °
/ ) RH.S. = tans6 = tan(45 +11) = —ndd +tanll
= cos’ f—cos’a (ii) 1—tan45° tan11
Example 2: Without using tables, find the values of all trigonometric functions of 75°. . sinllo
_ 1+tan11: _ 09511: :coslli.’+s%n11: = LHS.
Solution: As 75° = 45° +30° l1-tanll - sinll”  cosll”—sinll
cosll’
sin75" = sin(45" +30") =sin45° cos30° + cos 45 sin 30°
version: 1.1 version: 1.1
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Hence cosll” +sinll I

cosll’ —sinll°

Example 4: If cosa = %—: tan /3 4% the terminal side of the angle of measure « is in the I

quadrant and that of g is in the III quadrant, find the values of:

i) sin (a + ) ii)  cos(a+p)

In which quadrant does the terminal side of the angle of measure (a + g) lie?
Solution: We know that sin’a +cos’a = 1

sinat= 1 cos’e+ lJ_rﬂ += ‘/ﬂ l
625 625 25

As the terminal side o f the angle of measure of « is in the IT quadrant, where sin « is
positive.

) 7
sinag = —
2
Now sec f= +./l+tantf =+ ‘fl %LB j—é

As the terminal side of the angle of measure of g in the III quadrant, so sec g is
negative

41 40
secff= — and coS = ——
P 40 P 41

sin ff = i«/l—coszﬂ = + 1__16OO:+1

1681 41
As the terminal arm of the angle of measure g isin the Ill quadrant, so sin g is negative

: 9
sinff=  —
? 41

sin (¢ + ) = sinacosf+cosasinf

Example 5: If a,f,y are the angles of A4ABC prove that:

and  cos(a+ p)

(5w

25
280+216 64
1025 1025

cosacos ff—sinasin

S

1025

1023
1025

7
25

|

9
41

sin(a + f) is — ve and cos(a + f) is + ve

.".The terminal arm of the angle of measure (a + f) is in the IV quadrant.

)

i)

[

J

tana +tan f +tany = tan atan ftan y

B

B . 7

/4

o o
tan— tan— + tan— tan—+ tan—tan— =
2 2 2 2 2 2

Solution: As «a, B, y are theangles of A ABC

)

a+pf

a+pf+y =
= 180" -y
tan (a + f)

tana +tan

l-tana tan S

180°

= tan(180° —y)

= tan y

1

version: 1.1
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= tana+tanf = —tany+tanatan ftany = rsin(6+¢)
L4
tana +tan f +tany = tanatan ftany Where rooo== and ¢ tan 3
i) As a+pf+y= 180 = Z+E+Z:900 .
SRR Exercise 10.2
1.  Prove that
so 2P _gp_7 i) sin(180°+6) = —sin@ i) cos(180° +6) = —cosd
2 2 2 :
F, i)  tan(270° — @) = cotd IV)  cos(€—-1808")= cosd
a . : :
tan(; +Ej = tan(90 —gj V)  cos(270° +0) =siné vi)  sin(0+270°)= cosé
vii)  tan(180° + &) =tand viii)  cos(360° —6) = cosd
tanngtanﬁ 1 . .
— 2 - ?B:: cot% — 2.  Find the values o f the following:
l—tanztang tang i) sin 15° i) cos 15° iii) tan 15°
a By a  p Ilv)  sin 105° V) cos 105° vi) tan 105°
= tan—tan—+tan—tan—= 1 tan—tan— . . . . . . .
2 2 22 (Hint: 15° = (45 30°) and 405  (60° 45

3. Prove that:
B B. 7y Y

tangtan—+tan—tan—+tan5tan% =1 i

i) sin(45" + ) = ﬁ (sina + cos)
Example 6: Express 3 sin 8+4 cos 6 in the form r sin(@ + ¢), where the terminal side of the )
angle of measure ¢ is in the I quadrant. i) cos(a+45)= ﬁ(cosa —sina)

Solution: Let3 ==rcos¢ and 4  rsing 4.  Prove that:

3*+4> = ricos’¢+r’sin’ ¢ i) tan (45" + A4) tan (45" - 4) = 1
4 _ rsing - 3
= 9416 = r2(0052¢+sin2¢) 3_ I"COS¢ ||) tan (2—9)+tan(7+9]: 0
= 25 = 7 L4 y Vs r
< — = .
- 5 - 7 3 an i) sm(¢9+g)+cos(0+?)= cosd
= r =5 S tang = —
sin @ —cos ftan 0 P
3sinf+4cosf = rcos @gsinf+rsingcos 6 iv) g’ — tan —
: 2
=+ r(sinfcos¢ cos@sing) cos0+sm9tan§
version: 1.1 version: 1.1
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l-tanftan ¢  cos(6+ @)
l+tan dtan g  cos(d — @)

Show that: cos(a + B)cos(a — ) = cos” a —sin” S =cos’ f—sin’ a

Show that: sin(a + f) +sin(a — )
" cos(a + B)+cos(a — )

= tano

Show that:

A cot (a+ ff) = cotacot f—1
cota +cot ff

i) cot (¢ — ) = cotacot f+1
cot f —cota

tana +tan B sin(a + f)

i) tana—tan f  sin(a — f)

If sin05::i and cos ﬂ, where 0<a<”Z and O<,B<£.
5 41 2 2

133
Show that si -p) = —.
sin (a — f3) 205
If sina:i<and sinf3= 2 <where = o zand = S . Find
5 13 2
) sin (a+ f) i) cos (a+ f) i)  tan (ax+ f)

iv)  sin (- f5) V) cos (a— /%) vi) tan (a - f).

In which quadrants do the terminal sides of the angles of measures
(a+pB) and (a-—p) lie?

Find sin (¢ + ) and cos(a + ), given that

i) tan o :%, cos 3 = % and neither the terminal side o f the angle of measure

a nor that of g isin the I quadrant.

version: 1.1
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i)  tan a= %5 and sin £ % and neither the terminal side of the angle of

measure « nor that of g isin the Iv quadrant.

11. Prove that cos8 S%ng tan37
cos®’ sing&°

B y By

12. If a,p,y are the angles of a triangle ABC, show that cot%+cot3+cot5 = cot%cotzcotz

13. Ifa+pB+y= 180", show that
cotacot f+cot fcoty+cotycota = 1

14. Express the following in the formr sin (8+¢) or r sin (0 —¢), where terminal sides of
the angles of measures fand ¢ are in the first quadrant:

i) 12 sin @+5 cos @ ii) 3 sin@—-4cos@ iii) sin@—cos O

iV) 5 sin @—4cosé V) sin @ +cos 6. vi) 3 sin @-5 cos @

10.5 Double angle Identities

We have discovered the following results:
sin (¢ + ff) = sinacos f+cosasin f

cos (a + f)

cos acos f—sin asin

tan o + tan

and tan (o + =
(@+5) l-tana tan S

We can use them to obtain the double angle identities as follows:
)] Put f=a in sin(a+f) = sinacos f+cosasin

sin (@ +@) = sinacos & +cosasina

version: 1.1
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Hence sina = 2sinacose

i) Put f=a in cos(a+f) = cosacos f—sinasin
cos(ax+a) = cosacos o —sin asin o

cos2a= cos’a—sin‘«a
cos 2a = cos’a—(1—cos’a) (o sin’a =l —os’a)

= cos’a—1+cos’a

cos2a = cos’a—sin’ a

cos2a = (1 sin® a) sin’ a (v cos—a=1 sin’ a)

tan o + tan S

ii Put f=ain t +p) =
) pmain tan@+f) l—-tan atan S

tan o + tan

tan(a + ) =
( ) 1—tan o tan @

10.6 Half angle Identities

The formulas proved above can also be written in the form of half angle identities, in
the following way:

i) o cosa=2008E -1 cog o oS
2 2 2

version: 1.1

i) v cosa—= 1 2sin"=

o l1—cos o
o sin — ,/
i) tans = —2
2 a 1+cosa
2

10.7 Triple angle Identities

i) sin 3a = 3sina —4sin’ «
i) cos3a=4cos’a—3cosa

3tan a —tan’ «

iii) tan 3a = >
1-3tan”

Proof:

i) sin 3a = sin 2a +a)

=+ sin 2 cos ¢ coS 2asin &
= 2sinacosacosa (1 2sin’ a)sina
= 2sinacos’ a+sin @ —2sin’ a

= 2sin a(l-sin® a)+sina —2sin’ «

@)

version: 1.1
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= 2sin ¢ —2sin’ a +sina —2sin’ a sin A +sin?2 A
Hence = tan 4.
Example 2: Show that
i) cos3a = cos(2a+a) . . 2tand . 1—tan’ @
) sin20 = 200 i) cos20 = — 2 0
= cos2acos ¢ sin2asina 1+tan” 0 1+tan” @
= 20— —2si i . ) . . 2si 2 si
(2 cos” a—1) cos @ —2 sin gcos @ sin & Solution: i) sin20 = =2sin 0 cosH sin fcos 0 s21n0c9326?
= 2cos’ a—cos a—2sin® acosa 1 cos” 6 +sin" ¢
= 2cos" a—cosa—2(1-cos” a)cos a 2sind cos , sin 0
= 2cos’a—cosa—2cosa+2cos a o5l cos 0
. cos’@+sin’d  cos’d . sin® @
cos3a= 4cos a—3cosa c0s2 0 c0s20  cosO
. g - 20
i) tan3a = tan Qa+a) I+tan”" @
2 -2 2 - 2
.. ) cos” @—sin“@ cos” @—sin“ @
i)  cos20= cos® @—sin’ O = =
_ tan2a +tana 1 cos’ @ +sin’ @

l-tan2a tan o

2 -2
cos"@—sin"0  os’@ sin’@

- _
5 3 __ cos’d cos’d cos’d
tan o -Izr tano — tazn a cos’@+sin’@d  cos’d sin’d
l-tan” o —2tan” « cos’ @ cos’d cos’ O

Example 3: Reduce cos* 8 to an expression involving only function of multiples of 8, raised

Example 1:  Prove that sind+sin2d tan A4 to the first power.
I+cosA+cos2A
Solution: We know that:
. sin A + 2sin Acos A sin A(1+ 2cos A)

Solution: LH.S == > B 2 1+ cos26

l+cosdA+2cos°A—1  cosA(1+2cos A) 2cos” 0 += 1 cos28 cos” 0 >

. 2
_ smnd _ tan4 = R.H.S o cost@ = (cos’H) = [M}
cos A 2
version: 1.1 version: 1.1
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1+ 2 cos 26 + cos* 20
4

= % [1+2c0s26 + cos® 26]

= i[1+2cos29+w}

= ! [2+4c0s20 +1+cos4d]

4x2

= % [3+4cos 20 + cos40]

Exercise 10.3

1. Find the values of sin 2a, cos 2o and tan 2a, when:

i) sina = 12 i) cosa= i, where 0<a<Z
13 5 2

Prove the following identities:

sin2a
2. cota —tana =2cot2a 3. — = tan«a
1+cos2ax

1-cosa a cosa —Ssina

4 . = tan— 5 _ = sec2a —tan2a
sinx 2 cosa +sina
sing + cosg
6. 1+ s%na _ o) o) 7. coses @ + coses 20 _ cot Q
\/l—sma sin? — cos® sec & 2
2 2
8. l+tana tan2a = sec 2« o. 2sin Osin 20 = tan 20tané@
cosd +cos36
10. 51.1139_cos36’ _ 5 1. cos39+51T13H — 4c0s20
sinfd cosé cos@  sind

version: 1.1

tang + cotg
2

2 _
12. 0-sec<9

cotQ —tan—
2 2

13.

cosd sinf

sin36¢ cos36
+ =

14. Reduce sin* @ to an expression involving only function of multiples of 4, raised to the

first power.

15. Find the values of sin@ and cos & without using table or calculator, when 6 is

i) 18°

Hence prove that: cos36°cos72° cos108° cos 144° = %

HINt: 1t 9 18

50 ==90°

(360+20) = 90" +
30 = 90" 20

i)

sin3f = sinf90’

etc.

36 i) 54

Let 6 36°

50  180°

= (360 20 180°
-30 180" 20 =

20)| sin36  —sin(180°

etc.

72

10.8. Sum, Difference and Product of Sines and

Cosines

We know that:
sin(a + f)

sin(a — )
cos(a + f)
cos(a— )

sin & cos [+ cosasin B
sin cos ff—cosasin
cosacos f—sinasin ff

cosacos [ +sinasin

Adding (i) and (ii) we get

sin(a+ f)+sin(a—f) = 2sinacosf
Subtracting (ii) from (i) we get

(i)

(i)
(iii)
(iv)

(V)

=)

version: 1.1
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sin(a + f)—sin(a—f) = 2cosasinf

Adding (iii) and (iv) we get
cos(a+ f)+cos(ax— L) = 2cosacosf

Subtracting (iv) from (iii) we get
cos(a+ f)—cos(a—pf) = —2sinasinf
So we get four identities as:

(vi)

(vii)

(viii)

2sina cos f = sin(a + f) +sin(a — )
2cosasin B = sin(a + f) —sin(a — f)
2cosacos B = cos(a + f) +cos(a — f3)

—2sinasin f = cos(a + ) —cos(ax — f)

Now putting ¢+ =P and a - =0, we get

S P+0 and S ﬂ
2 2
sinP+sinQ = 2sinP+QcosP_Q
2 2
sinP—sinQ=ZCosP+QsinP;Q
cosP+cosQ:2cosP;QcosP;Q
cosP—cosQ = ZCOSP;QSinP;Q

Example 1: Express 2sin76cos36 as a sum or difference.

Solution: 2sin78cos36 = sin(76 + 36) + sin(76 — 36)

= sin 106 +sin 460
Example 2: Prove without using tables / calculator, that

version: 1.1
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Solution: sinSx+sin7x = 2si

sin19° cos 11" +sin 71° sin 11° :%

Solution: LH.S. =+sinl9 cos1I° sin71° sinll’

=+%[2sin 19° cos 11° 2sin 71" sin 11°]
= %[{sin(lg’ +11°) +sin(19° =11°)} — {cos(71" +11°) —cos(71° —117)} ]

= %[sin30° +sin8” —cos 82" + cos60°]

_ 1 l+sin8°—cos(90°—8°)+l
212 2
mr 1 . o oo . oo
= —| —+sin8 —sin& +—| (- cos82° =co0s(90" —8") =sing")
212 2
11 1
= —| —4—
212 2}
_1
2
= R.H.S.

Hence sin19°cosl11” +sin71° +sinl1° :%

Example 3: Express sin 5x+sin 7x as a product.

. Sx+7x S5x—"Tx
n cos 2:

= ZSinF6xCcoSXx (. cos( @) cos O)

Example 4: Express cosA+cos34+cos54+cos7A4 as a product.

Solution: cosA+cos3A4+cos54+cos7A

2sin 6x-€eo0s( x)

@)

version: 1.1
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=(cos3A+cosA)+(cos7A+cos5A4)

34+ A4 34— A4 TA+ A TA-5A4
cOS 5 2cos 5 cOoS 5

=2cos2A4cosA 2cos6Acos A4

=2cos

=2cos A(cos6A4 cos2A)

:2cosA[2cos 64+24 coS 6A_2A}

2
=2 cos A(2cos 44 cos 2A) 4cos Acos2Acos4A.

Example 4: Show that cos20° cos40° cos80° :é

Solution: LH.S. =c0s20° cos40° cos80°
1 . o o
= Z(4cos20 cos40° cos807)
= %[(200540" cos20”) .2 cos807]

= %[(cos 60" +c0s207).2 cos80°]

= l (l+cos20°j.200580°
41\ 2

= %(00580" +2c0s80° cos20°)
= %(00580" + c0s100° +cos60°)

= %[cos 80" +cos(180° —80°) + cos 60°]

S—
4 2

_ l(lj:l R.H.S.
4\ 2 8

Hence cos 20° cos 40° cos 80° =é.

Exercise 10.4

1.  Express the following products as sums or differences:

i) 2 sin 36 cos 0 i) 2 cos 56 sin 360

i) sin 56 cos 260 Iv)  2sin 76 sin 20

V) cos(x + y) sin(x—y) Vi)  cos(2x+30%) cos(2x —30")
vii)  sin 12° sin 46° viii)  sin(x +45°) sin(x —457)

2.  Express the following sums or differences as products:

) sin 560 + sin 360 i)
iii) cos 60 + cos 36 iv)
V) cos 12° + cos 48° Vi)

3.  Prove the following identities:

. sin3x —sinx ..
) = cot 2x i)
COSX —C0S3x

sin 86 — sin 46

cos 760 — cos 0

sin (x +30") + sin(x —30%)

sin8x +sin2x
= tan S5x

cos8x +cos2x

sina —sin o — o+
i) sina —sinff = tan ’Bcot P

sina +sin 2 2

4. Prove that:
i) c0s20° +cos100° +cos140° =0

i) sin(z—ﬁjsin(zﬂé’j :lcos2a9
4 4 2

version: 1.1

version: 1.1
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sin@ +sin36 +sin 560 +sin 760
i) = tan 40
cos@ +cos38 +cosS50 +cos76

5. Prove that:;

) c0s20° cos40° cos60° cos80° = %

. .. 2 . . 4rx 3
i) sin—sin—sin—sin— = —
9 9 3 9 16

iii) sin10°sin30°sin50°sin 70° = %

version: 1.1
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11.1 Introduction

Let us first find domains and ranges of trigonometric functions before drawing their
graphs.

11.1.1 Domains and Ranges of Sine and Cosine Functions
, : : : Y
We have already defined trigonometric functions N

sin ¢, cos o, tan ¢, csc g, sec ¢ and cot 9. We know that B0, 1)
if P(x, y) is any point on unit circle with center at the origin Px. v)
O such that «xop = ¢ is standard position, then

. y
cos & =x and sin g =y ” b > X
C(-1, 0) Of x M [AQ 0)

=  for anyreal number ¢ there is one and only
one value of each x and y .i.e., of each cos ¢ D0, —1)
and sin 4. Figure11.1 v

Hence sin ¢ and cos 0 are the functions of ¢ and their domainis R a set of real numbers.
Since P(x, y) is a point on the unit circle with center at the origin O.

-1<x<1 and -1<y<1

= —1<cosf <1 and —1<sin@ L1
Thus the range of both the sine and cosine functions is [-1, 1].

11.1.2 Domains and Ranges of Tangent and Cotangent Functions
From figure 11.1

) tan O == , x 0

X

—  terminal side OP should not coincide with OY or OY’ (i.e., Y-axis)

11. Trigonometric Functions and their Graphs
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3z Sxm

= f=#x —, ..
2 2

, X

NN

= 6’¢(2n+1)%, where ne Z

Domain of tangent function :R—{x|x:(2n+l)%, ne 7}
and Range of tangent function = R = set of real numbers.
i)  From figure 11.1

cot == , y 0
y

—  terminal side OP should not coincide with OX or OX (i.e., X — axis)
= 0 #0,x7r,x2x,...

= 0 # nmr, Wwhere ne Z

Domain of cotangent function = R—{x|x=nz, ne Z}
and Range of cotangent function = R = set of real numbers.
11.1.3 Domain and Range of Secant Function
From figure 11.1

sec 0 :;tl , x 0
X

— terminal side OP should not coincide with OY or OY’ (i.e., Y — axis)

3z 5

= 0=+ —, ..
2 2

+
b

NN

version: 1.1
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T
0+ (2n+1)— h Z _
= (2n )2, where ne y = tan x —oo<x<+oo,x¢—(2”+1)”,nez —00 < y <+00
. . y=cot x _ —00 < Y < 400
Domain of secant function = R—{x|x:(2n+1)§, ne 7} O<X<toxENT,  nEZ 4
2n+Drm y=lor y<-1
- = —0 < X<+ 0,xXE——NE /
As sec ¢ attains all real values except those between -1 and 1 yosee
_ >] or y<-1
Range of secant function = R- {x| —1<x<1} Y = coses X —00 < X <+ 00,X# NI, ne Z|” Y

_ _ 11.2 Period of Trigonometric Functions
11.1.4 Domain and Range of Cosecant Function

All the six trigonometric functions repeat their values for each increase or decrease of
27 in @ i.e., the values of trigonometric functions for @ and 0 +2nz, where e R, and ne Z,
are the same. This behaviour of trigonometric functions is called periodicity.

Period of a trigonometric function is the smallest +ve number which, when added to
the original circular measure of the angle, gives the same value of the function.

Let us now discover the periods of the trigonometric functions.

From figure 11.1

1
csc O =#— , y 0
y

— terminal side OP should not coincide with OX or OX (i.e., X — axis)
= 0=0,tr,+2x,..

— 0 # nr, where ne Z Theorem 11.1: Sine is a periodic function and its period is 2.

Proof: Suppose pis the period of sine function such that

Domain of cosecant function = R- = VA : : .
Wlx=nm, neZj sin (B+p) = sl forall & R (i)
_ Now put =0, we have
As csc ¢ attains all values except those between -1 and 1 : :
sin (0+p) = sin0
Range of cosecant function = R—{x|-1<x<1} = sinp= 0
= p = 0,t7,+27, +37,...

The following table summarizes the domains and ranges of the trigonometric func-

tions: i) if then from (i)
. . = 72-]
Function Domain Range P ) )
sin (€ + ) = sin @ (not true)
y=sin x —00 < X <+%0 -1<y<1  sin (B+7) =— sin 0
y=cos x —0 < X < +00 1< y<l 7 is not the period of sin 4.
i) if p=2x,then from (i)
sin (6+27) = sin 8, Which is true
version: 1.1 version: 1.1
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As is the smallest +ve real number for which
sin (0+2rx) = sin @

27 is not the period of sin 4.
Theorem 11.2: Tangent is a periodic function and its period is .

Proof: Suppose p is the period of tangent function such that
tan (6+ p) = tag 0 for all & R (ii)

Now put =0, we have

tan (0+p) = tan 0
= tan p= 0
p=0,r,27 3nm,....
i) if p=7,then from (i)
tan (@+7) = tan 6, whichis true.
As 7 is the smallest +ve number for which

tan (€ + ) tan 6

7 is not the period of tan 4.

) 27 is the period of cos 6. i)  2xisthe period of cscé.

iii) 2z is the period of secé. iv)  x isthe period of coté.

11. Trigonometric Functions and their Graphs
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version: 1.1

)

.. X
i tan—
) 3

Example 1: Find the periods of: i) Sin 2x
Solution: i) We know that the period of sine is 2z
sin (2x+2r) = sin2x = sin2(x+x) = sin2x

It means that the value of sin 2x repeats when x is increased by r.

Hence n is the period of sin 2x.
i)  We know that the period of tangent is =

tan(£+7rj = tani
3 3

It means that the value of tang repeats when x is increased by 3.

Hence the period of tan% is 3.

:>tanl(x+37z) = tan>
3 3

Exercise 11.1

Find the periods of the following functions:

1. Sin 3x 2. COS 2x 3.
5 sini 6 coses£ 7.
3 4
X
. tan7 10. cot 8x 11.
13. 3sinx 14. 2 cosx 15.

tan 4x
. X
S1In—
5

sec 9x

3 cosf
5

12.

X

cot—
2
X

COS—
6

cosec 10x.

version: 1.1
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11.3 Values of Trigonometric Functions

We know the values of trigonometric functions for angles of measure 0°, 30°, 45°, 60°,
and 90°. We have also established the following identities:

sin(-f)— = sin & —cos( & cos - —tan ( &) tan 6
sin(z—60) = sin @ cos(wr 6%— cesf tan (& =0) tan 6
sin(m+6% = sin & cos(® 4) cos B+ tam(mw 0) tan 6

sin(2r—60% = sin & cos(2r—60) = cosf tan(2r - +and

By using the above identities, we can easily find the values of trigonometric functions
of the angles of the following measures:

-30°,-45°,-60",-90°

+120°,+£135°,+£150°,£180°

+210°,4£225°,+240°,£270°

+300°,+315°,+330°,£360".

11.4 Graphs of Trigonometric Functions

We shall now learn the method of drawing the graphs of all the six trigonometric
functions. These graphs are used very often in calculus and social sciences. For graphing the
linear equations of the form:

ax+by+c =0 (i)
a,x+by+c, = 0 (ii)

We have been using the following procedure.

i) tables of the ordered pairs are constructed from the given equations,

ii)  the points corresponding to these ordered pairs are plotted/located,
and iii) the points, representing them are joined by line segments.

Exactly the same procedure is adopted to draw the graphs of the trigonometric
functions except for joining the points by the line segments.

For this purpose,

i) table of ordered pairs (x, y) is constructed, when x is the measure of the angle and
y is the value of the trigonometric ratio for the angle of measure x;

ii)  The measures of the angles are taken along the X- axis;

iii)  The values of the trigonometric functions are taken along the Y-axis;

iv)  The points corresponding to the ordered pairs are plotted on the graph paper,

v)  These points are joined with the help of smooth ciurves.

11.5 Graph of y = sin x from 27 to 27

We know that the period of sine function is 2z so, we will first draw the graph for the
interval from 0° to 360° i.e., from 0 to 2.
To graph the sine function, first, recall that -1 < sin x<1 forall xe R

i.e., the range of the sine function is [-1, 1], so the graph will be between the horizon-
tal linesy=+1andy=-1

The table of the ordered pairs satisfying y = sin x is as follows:

T T b3 2r 5w T 4n 3n Sn 11x
0 foke? — — — —— T i === e =L e 2n
6 3 2 3 6 6 3 2 3 6
X or or or or or or or or or or or or or

0° 307 | 60 90" | 1207 | 150° [ 180° | 2107 | 240° | 270° | 300° | 330° | 360°

Sinx| 0 0.5 | 0.87 1 |0.87 | 0.5 0 |-05|-087| -1 |-0.87| 0.5 0

version: 1.1
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To draw the graph

1side of small square on the x —axis =10°

i) Take a convenient scale { ~ _ , _
1side of big square on the y —axis = Tunit

i) Draw the coordinate axes.

iii)  Plot the points corresponding to the ordered pairs in the table above i.e., (0, 0),
(30°, 0.5), (60°, 0.87) and so on,

(iv) Join the points with the help of a smooth curve as shown so we get the graph of
y = sin x from 0 to 360° i.e., from O to 2« .

I I 1 ! I
211 400 2700 3000 35300 3600

Graph of y=sin x from 0° to 360°

In a similar way, we can draw the graph for the interval from 0° to —360°. This will
complete the graph of y = sin x from —-360° to 360° i.e. from — 2z to 2z, which is given below:

%

Graph of y=sin x from -360" to 360°

The graph in the interval [0, 27 ] is called a cycle. Since the period of sine function is 2r,
so the sine graph can be extended on both sides of x-axis through every interval of 2z (360°)

11. Trigonometric Functions and their Graphs elLearn.Punjab

version: 1.1

as shown below:

R i S i

11.6 Graph of y = cos x from -2 to 27

We know that the period of cosine function is 2z so, we will first draw the graph for the
interval from 0° to 360° i.e., from O to 27

To graph the cosine function, first, recall that -1< sinx<1 forall xe R

i.e., the range of the cosine functionis[-1, 1], so the graph will be between the horizontal
linesy=+1andy=-1

The table of the ordered pairs satisfying y = cos x is as follows:

AR R E
3 2 3 3 2 3 ]
X
or ar or ar or or or or ar or or or or
¢ | 300 |60 | 900 | 120 | 1500 | 1800 | 2100 | 240 | 270° | 300" | 330° | 3¢
cosx | 1 | 087 | 03 0 | 05|08 -1 087 05| 0 05 | 087 | 1

The graph of y = cos x from 0° to 360° is given below:

Y
1
]

e
1]
1
1
| ]
1
i
L]
1]
i
i
Ll
i
L
a
i
"
L]
L]
1
'
]
]
L)
L]
1]
1
i
L]
]
[ ]
i
[]
[]
]
i
i
i
]
L]
L]
n
| |

v

e

"

h

150°

=

1208 1807 2107 240072700 3007 3300 360°

A
LA

A
B
v
i
L

+

Graph of y =cos x from 0° to 360°

version: 1.1
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In a similar way, we can draw the graph for the interval from 0° to —360°. This will
complete the graph of y = cos x from -360° to 360° i.e. from — 2 to 2z, which is given below: iv) xapproaches —% from righti.e., x — —%+0, tan x increases indefinitely in III Quard.

¥ We know that the period of tangent is = , so we shall first draw the graph for the

\/‘—* = interval from -z to r i.e., from —180° to 180°
- , L . The table of ordered pairs satisfying y = tan x is given below:

Sudenunsmnnmsmnanssnnnnolis jim=] —x LA S e (S 0 L] ol L R &% | &= 3
v 6| 3|2 |2 3| 6 & |3 |2 |2 306
X or
or or or ar ar or ar| ar or ar ar ar or or
raph of y = cos x from — 360° to 360° -180°
Graphof y=co 6 150 | -120° |90-0/-90+0 60" | =30 | 0 | 30° | 60" |90 =090 50 120" | 150" | 180
As in the case of sine graph, the cosine graph is also extended Tanx| 0 [058 |17 | +0 | o |[-1.73 | -058| 0 | 058 | 173 | 4o | —» |-173|-058| 0

on both sides of x-axis through an interval of 2z as shown above:

Graph of y =tan x from —180° to 180°

y
'y

Graphof y=sin x from -4ntodn

11.7 Graph of y = tan x from — 7 To

We know that tan (-x) = — tan x and tan (r — x) = — tan x, so the values of tan x for
x = 0°, 30°, 45°, 60° can help us in making the table. 3
Also we know that tan x is undefined at x = + 90°, when N 15 -2 - -

| | X
1200 15071807

e e B

i) x approaches % from lefti.e., x—)%—O, tan x increases indefinitely in T Quard.

i)  xapproaches % fromrighti.e., x—>%+0, tan x increases indefinitely in IV Quard.

L LT TSRS - BRI S

B T L T

iii) xapproaches —% from lefti.e., x—)—%—o tan x increases indefinitely in IT Quard.

version: 1.1 version: 1.1
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We know that the period of the tangent function is z. The graph is extended on both
sides of x-axis through an interval of z in the same pattern and so we obtain the graph of
y = tan x from -360° to 360° as shown below:

y
4 I B 4
a BN z
E | s |
' . - : ;
<4 T T T ; T i T T E T T i T T X
=350 330 300 #l] -4 -Pl}' LU 9f 1200 157080 20 2400 Iﬁ'{f Inr 330 36
v wiv + ¥
v
Graph of y = tan x from —360° to 360°
11.8 Graph of y =cot x From -2z to
We know that cot (—x) = — cot x and cot (r — x) = — cot x, so the values of cot x for

x =0°, 30°, 45°,60°, 90° can help us in making the table.
The period of the cotangent function is also . So its graph is drawn in a similar way of
tangent graph using the table given below for the interval from —180° to 180°.

version: 1.1
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| Wm|7 | =® T| x x ' IJ: | 5
= S0 - | 2| 3505 2| =
B B e i e B e B I i P i
ar ar ar or or or or or or of ar or ar or
-180° 1507 ~120° -90'-01-90+0) ~60° | -30° 30° | 607 |900-0[90+0] 120° | 150° | 180°
cotx| oo | 173|038 | 40 | o |-058[-173| £ | 173 | 058 | 40 | =0 43.53%-:.13 0
4 % &
n 1
1
i i
i i
i i
L] 1
: :
' .
1 1
: 34 :
s 177 e
: ; E
' '
i ]
L] L]
' '
+——r— —> X
I8 150" ~120° 90 Em'
] ]
] ]
" '
' '
] L]
] L]
] ]
[ ] - ]
] ]
] — 1
] §
] ]
] ]
] ]
] ]
: :
i '
1 L]
] ]
[ ] L]
] L]
| :
v v v

Graph of y =cot x from —180° to 180°

We know that the period of the cotangent function is 7. The graph is extended on both

()
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sides of x — axis through an interval of  in the same pattern and so we obtain the graph of Since the period of sec x is also 27z, so we have the following graph of y = sec x from

y = cotx from from —360° to 360° as shown below: —360° to 360°i.e., from — 27 to 2x:
y L §
! : * ; ! ;
' ' : 5 A 4 4 4
: “--
——> X
33 360
: + T T T 1 T T T T T L T T T T T T T ] T T X
' E 3T <30 =304 —.?u ~34IF <200 =180 ~EST ~120 .?n i - { I3 150 IS0 200 240 z?o' I 3P 360
; i : ------ »y=-1
v v v v : ' : :
Graph of y = cot x from —360° to 360° v A v v

Graph of y = sec x from - 360° to 360°

11.9 Graph of y = sec x from -2 to 2~
11.10 Graph of y = csc x from -2 to 27

We know that sec (—x) =secx and  sec (# x> =secx,

We know that: csc (—x) = —cscx and csc(zr —x)=csCx
So the values of csc x for x = 0°, 30°, 45°, 60°, can help us in making the following
table of the ordered pairs for drawing the graph of y = csc x for the interval 0° to 360°:

So the values of sec x for x = 0°, 30°, 45°, 60°, can help us in making the following table
of the ordered pairs for drawing the graph of y = sec x for the interval 0° to 360°:

" EEEIE: |4 3x fm | 5n | 5 AL LA N
o |53 3737 |5 | %% |3 R T|T |~ [P0 % 2 (3| il NER
o o or ar or or or ar or or or or or ar or or or ar ar or or or or or or or Qr ar or or
0 |30 | 600 |90-0]90+0[ 120" | 150° | 180 | 210" | 240" [270-0/270+0{ 300" | 330" | 360" | 0+0 | 30° | 600 | 90" | 120° | 150° 180-0/180+0| 210° | 240° | 270° | 300° | 330° | 360°
Seex| 1| LS| 2 | @ | =0 | 2 |-LiS| -1 |15 2 | | 4| 2| LIS e I e R R I e Bl I s e Bl
version: 1.1 version: 1.1
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Since the period of csc x is also 2z, so we have the following graph of i) vy = @n2x, x [ zx]
$ H 1 4 4 _
! : | iv) vy = dn—ux, x [ 2x,2x]
.X
V) y =€ sin P% x [0,27]
. X
vi) y = ecos—E, x [ w7
..... : # y=1
S s ey T ——T—TT——** 2. Onthe same axes and to the same scale, draw the graphs of the following function for
Y MY R0 TN 2MT SR IR 1SN N0 P eET e300 wr s WF 12 15F IEDT 2P 2400 270 3o 350 _icr
' ‘ their complete period:
i R M - i) y=sinx and y =sin2x
i) y=cosx and y=cos2x
i | 3. Solve graphically:
N ' T ¥ v ) sin x =€o0s X, x [0,7]
y=cscx from —360° to 360° i.e., from - 2x to 2m:
Graph of y = csc x from —360° to 360° ) sinx =exr x  [0,7]
Exercise 11.2
1.  Draw the graph of each of the following function for the intervals mentioned against
each:
) y = -—sinx, xe [-2x,2x]
i) y =€ 2cos x, x [0,27]
version: 1.1 version: 1.1
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12.1 Introduction

A triangle has six important elements; three angles and three sides. In a triangle ABC, the
measures of the three angles are usually denoted by a, B, y and the measures of the three
sides opposite to them are denoted by a, b, ¢ respectively.

If any three out of these six elements, out of which atleast one side, are given, the
remaining three elements can be determined This process of finding the unknown elements
is called the solution of the triangle.

We have calculated the values of the trigonometric functions of the angles measuring 0°,
30°, 45°,60° and 90°. But in a triangle, the angles are not necessarily of these few measures.
So, in the solution of triangles, we may have to solve problems involving angles of measures
other than these. In such cases, we shall have to consult natural sin/cos/tan tables or we

may use [sin|,[cos|,[tan| keys on the calculator.
Tables/calculator will also be used for finding the measures of the angles when value
of trigonometric ratios are given e.g. to find 6 when sin6 = x.

12.2 Tables of Trigonometric Ratios

Mathematicians have constructed tables giving the values of the trigonometric ratios of
large number of angles between 0° and 90°. These are called tables of natural sines, cosines,
tangents etc. In four-figure tables, the interval is 6 minutes and difference corresponding to
1,2, 3,4, 5 minutes are given in the difference columns.

The following examples will illustrate how to consult these tables.

Example 1: Find the value of
i) sin38°24 i) sin38°28 iii) tan 65° 30

Solution: In the first column on the left hand side headed by degrees (in the Natural Sine
table) we read the number 38°. Looking along the row of 38° till the minute column number
24" is reached, we get the number 0.6211.

sin3824" = 0.6211

version: 1.1
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i)  Tofind sin 38° 28', we first find sin 38° 24’, and then see the right hand column headed
by mean differences. Running down the column under 4' till the row of 38° is reached.
We find 9 as the difference for 4. Adding 9 to 6211, we get 6220.

sin3824" = 0.6220

iii)  Turning to the tables of Natural Tangents read the number 65° in the first column on
the left hand side headed by degrees. Looking along the row of 65° till the minute
column under 30' is reached, we get the number 1943. The integral part of the figure
just next to 65° in the horizontal line is 2.

tan6530" = 2.1943

Example 2: If sinx = 0.5100, find x.

Solution: In the tables of Natural Sines, we get the number (nearest to 5100) 5090 which
lies at the intersection of the row beginning with 30° and the column headed by 36'. The
difference between 5100 and 5090 is 10 which occurs in the row of 30° under the mean
difference column headed by 4'. So, we add 4’ to 30° 36" and get
sin'(0.5100)=  30°40'
Hence x =30°40
Exercise 12.1

1. Find the values of:

i) sin53°40’ i) c0s36720’ i) tan19°30
iv)  cot33°50 V) cos42°38' vi)  tan25°34'
vii)  sin1831 viii)  cos52°13' iX)  cot89°9

version: 1.1
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2. Find 9, if:
) sin @ = 0.5791 ii) cos @ = 0.9316
i) cos @ = 0.5257 iv) tan @ = 1.705
V) tan 8 = 21.943 vi) sin@ = 0.5186

12.3 Solution of Right Triangles

In order to solve a right triangle, we have to find:
i) the measures of two acute angles
and ii) the lengths of the three sides.

We know that a trigonometric ratio of an acute angle of a right triangle involves 3
quantities “lengths of two sides and measure of an angle”. Thus if two out of these three
guantities are known, we can find the third quantity.

Let us consider the following two cases in solving a right triangle:

CASE I: When Measures of Two Sides are Given
Example 1: Solve the right triangle ABC, in which b = 30.8, c = 37.2 and y= 90°.

Solution: From the figure,

=——=0.8280
37.2
— a=cos ' 0.8280=346

y =90 = B=90-a = 90°-346, = 5554,

b 30.8
cosa =—
c

a .
— = sina
c
= a = csma 37.Zsin34°6,
=37.2(0.5606)
=20.855
= a = 209

Hence a = 209, o =34 and B = 5554

version: 1.1
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CASE II: When Measures of One Side and One Angle are Given

Example 2: Solve the right triangle, in which
a= 5813, b =1257and y = 90°

Solution: - y=90°, a = 5813 .. f=90"- 5813 = 31’47
From the figure,
£ = tans8 13
b
=X a =(125.7)tan5813'

=125.7(1.6139)
=202.865

a = 202.9 A

Again £ = sin5813
C
202.9
0.8500
S c = 238.7
Hence a == 20297 31’47 and ¢ 238.7

Exercise 12.2

1.  Find the unknown angles and sides of the following triangles:

5 8
56
4
10 8 B
45 40
(1) )

15
(i1) (111) (iv) (v) (vi
Solve the right triangle ABC, in which y=90°
2. a =37°20, a 243 3. a=62'40, b 796
4. 0=3.28, b =5.74 5. b=684, €c=96.2

O,

version: 1.1
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6. a=5429, C=6294 7. [=5010, ¢ 0.832

12.4 (a) Heights And Distances

One of the chief advantages of trigonometry lies in finding heights and distances of

inaccessible objecst:
In order to solve such problems, the following procedure is adopted:

1)  Construct a clear labelled diagram, showing the known measurements.
2)  Establish the relationships between the quantities in the diagram to form

equations containing trigonometric ratios.

3) Use tables or calculator to find the solution.

(b) Angles of Elevation and Depression

Angle of Elevation 4

If 04 is the horizontal ray through the eye of the v Angle of Depession

observer at point O, and there are two objects Band C

such that B is above and Cis below the horizontal ray
04, then,
c
i)  forlooking at B above the horizontal ray, we have to raise our eye , and ZAOB is
called the Angle of Elevation and
i)  for looking at C below the horizontal ray we have to lower our eye , and Z40C is
called the Angle of Depression.

Example 1: A string of a flying kite is 200 meters long, and its angle of elevation is 60°. Find
the height of the kite above the ground taking the string to be fully stretched.

Solution: Let O be the position of the observer, B be the position of the kite and 04 be the

horizontal ray through O.
Draw B4 1 04

version: 1.1
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Now mZ0O =60"andOB =200m 2
Suppose AB = x meters 200 m
In right AOAB, x
X sin60’ :£:_1.732 60 [—
200 2 2 0 p
= x = 200(%) = 100(1.732)= 173.2

Hence the height of the kite above the ground = 173.2 m.

Example 2: A surveyor stands on the top of 240 m high hill by the side of a lake. He observes
two boats at the angles of depression of measures 17° and 10°. If the boats are in the same
straight line with the foot of the hill just below the observer, find the distance between the

two boats, if they are on the same side of the hill.

240 m

=

Solution: Let T be the top of the hill TM , where the observer is stationed, A and B be the
positions of the two boats so that ms/XTB = 10° and m/XTA = 17° and TM = 240m .

Now, m/MAT —=Zm XTA= 17 (x| [MA)

and m/MBT = msXTB = 10 (.TX| |MA)

From the figure, M _ tan17°
AM

version: 1.1
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~ I - ™ _ 240
tanl7° 0.3057

—  AM = 785m

and i:tanlO"

S|

B =M _ 240 =1361m
tan10°  0.1763

S.AB=BM — AM =1361-785=576m
Hence the distance between the boats = 576m.

Example 3: From a point 100 m above the surface of a lake, the angle of elevation of a peak
of a cliff is found to be 15° and the angle of depression of the image of the peak is 30°. Find
the height of the peak.

Solution:
Let A be the top of,the peak AM and MB be its
image. Let P be the point of observation and L be the 100 i
point just below P (on the surface of the lake).
such that PL = 100m

From P, draw PQ 1 AM .
Let PO =y metres and AM = h metres.
.. AQ=h—OM =h—PL=h—-100
From the figure,

tanl5° = A_Q:h—IOO and tan30° @ 100 +4

PQ y PQ y

By division, we get

tanl5"  h-100
tan 30° h+100

version: 1.1

By Componendo and Dividendo, we have

tanl5" +tan30° A-100+A+100  2h h
tanl5° —tan30 A-100—-A-100 -200 -100
[0.5774+0.2679} 100

0.5774-0.2679

h tan30° + tan15’
tan30° —tanl5

= h = 273.1179.
Hence height of the peak = 273 m. (Approximately)

12.5 Engineering and Heights and Distances

Engineers have to design the construction of roads and tunnels for which the knowledge
of heights and distance is very useful to them. Moreover, they are also required to find the
heights and distances of the out of reach objects.

Example 4: An O.P,, sitting on a cliff 1900 meters high, finds himself in the same vertical
plane with an anti-air-craft gun and an ammunition depot of the enemy. He observes that
the angles of depression of the gun and the depot are 60° and 30° respectively. He passes
this information on to the headquarters. Calculate the distance between the gun and the
depot.

¥
Solution: Let O be the position of the O.P., A be the point
on the ground just below him and B and C be the positions
of the gun and the depot respectively.

04 = 1900m

m/BOX = 60°
and mZCOX = 30’
= mtABO = m/ZBOX = 60", mZACO = 30°

LS00

In right ABAO, In right ACAO,
ﬂ = tan60’ ﬂ = tan30°
AB AC
~ 1B - 1900 _ 1900 i - 1900
tan 60° \/5 tan30°

version: 1.1
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Now BC = AC — AB = AC =1900/3

~ BC = 1900y3-2% _ 519393

3

Required distance = 2194 meters.
Exercise 12.3

1. A vertical pole is 8 m high and the length of its shadow is 6 m. What is the angle of
elevation of the sun at that moment?

2. A man 18 dm tall observes that the angle of elevation of the top of a tree at a distance
of 12 m from him is 32 . What is the height of the tree?

3. Atthe top of a cliff 80 m high, the angle of depression of a boat is 12°. How far is the
boat from the cliff?

4. Aladder leaning against a vertical wall makes an angle of 24° with the wall. Its foot is
5m from the wall. Find its length.

5. Akite flying at a height of 67.2 m is attached to a fully stretched string inclined at an
angle of 55° to the horizontal. Find the length of the string.

6. When the angle between the ground and the suri is 30°, flag pole casts a shadow of
40m long. Find the height of the top of the flag.

7. Aplane flying directly above a post 6000 m away from an anti-aircraft gun observes the
gun at an angle of depression of 27°.Find the height of the plane.

8. A man on the top of a 100 m high light-house is in line with two ships on the same side
of it, whose angles of depression from the man are 17° and 19° respecting. Find the
distance between the ships.

9. PandQ aretwo points in line with a tree. If the distance between P and Q be 30 m and
the angles of elevation of the top of the tree at P and Q be 12° and I15° respectively, find
the height of the tree.

10 Two men are on the opposite sides of a 100 m high tower. If the measures of the
angles of elevation of the top of the tower are 18° and 22°respectively find the distance
between them.

11. A man standing 60 m away from a tower notices that the angles of elevation of the top
and the bottom of a flag staff on the top of the tower are 64° and 62° respectively. Find

12. Application of Trigonometry elLearn.Punjab
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the length of the flag staff.

12. The angle of elevation of the top of a 60 m high tower from a point A, on the same level
as the foot of the tower, is 25°. Find the angle of elevation of the top of the tower from
a point B, 20 m nearer to A from the foot of the tower.

13. Two buildings A and B are 100 m apart. The angle of elevation from the top of the
building A to the top of the building B is 20°. The angle of elevation from the base of
the building B to the top of the building A is 50°. Find the height of the building B.

14. A window washer is working in a hotel building. An observer at a distance of 20 m
from the building finds the angle of elevation of the worker to be of 30°. The worker
climbs up 12 m and the observer moves 4 m farther away from the building. Find the
new angle of elevatign of the worker.

15 A man standing on the bank of a canal observes that the measure of the angle of
elevation of a tree on the other side of the canal, is 60. On retreating 40 meters from
the bank, he finds the measure of the angle of elevation of the tree as 30 . Find the
height of the tree and the width of the canal.

12.6 Oblique Triangles

A triangle, which is not right, is called an oblique triangle. Following triangles are not
right, and so each one of them is oblique:

We have learnt the methods of solving right triangles. However, in solving oblique

triangles, we have to make use of the relations between the sides g, b, c and the angle a3,y
of such triangles, which are called law of cosine, law of sines and law of tangents.
Let us discover these laws one by one before solving oblique triangles.

version: 1.1
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12.6.1 The Law of Cosine

In any triangle ABC, with usual notations, prove that:

-

) a’ =b* +c* —2bccosa
i) b*=c* +a’—2cacos 8

i) ¢*>=a’>+b>—2abcosy A
N7 3

Origin |A(0,0) b C(b, 0)

Proof: Letside AC of triangle ABC be along the positive direction of the x-axis with vertex
A at origin, then ZBAC will be in the standard position.

AB = ¢ and mZBAC = «
coodinatesof B are(c cose, ¢ sinQ)
AC = b and point Cis on the x-axis
Coordinates of C are (b, 0)
By distance formula,

—
‘BC‘ =(ccosa —b)” +(c sina —0)°
= a’ = ccosa+b’—2bccosa +ctsin®a %E a)

= a = c’(cos’a+sin’a)+b> —2bccosa

- = e 0

In a similar way, we can prove that

(ii)
(iif)

(i), (i) and (iii) are called law of cosine. They can also be expressed as:

12. Application of Trigonometry elLearn.Punjab

12.6.2 The Law of Sines

In any triangle ABC, with usual notations, prove that:

a b ¢
sin sinff  siny
a b ¢
sinag  sinfl  siny
¥

Origin |4 C

Proof: Let side AC of.triangle ABC be along the positive direction of the x-axis with vertex A
at origin, then ZBAC will be in the standard position.

version: 1.1
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AB = ¢ and m/BAC = «a
. The coodinates of the point B are (c cos &,c sinQ)
If the origin A is shifted to C, then ZBCX will be in the standard position,
BC = a and mZBCX = 180°—y

The coodinates of B are [a cos(180° —y), a sin(180° — )]

In both the cases, the y-coordinate of B remains the same
= asin(180—-y)=csinax

asin y =csin

In a similar way, with side 4B along +ve x-axis, we can prove that:

From (i) and (ii), we have _

This is called the law of sines.

12.6.3 The Law of Tangents

In any triangle ABC, with usual notations, prove that:

a—-pf By
a—b ~ tan > “) b—c ~ tan 5

tan

version: 1.1
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y—a

tan

1T ——_—

+a
cta tan7

Proof: We know that by the law of sines:

a b
sina sinf8

a sina

b sin f#

By componendo and dividendo,

a—-b _ sina-sinf

2cosa;ﬁ n 2P

sin
2

a+b __sina+sin,8 OH‘ﬂCOSa—ﬂ

2

2sin

Similarly, we can prove that:

(i)

= (i), (ii) and (iii) are called Law of Tangents.

()
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12.6.4 Half Angle Formulas

We shall now prove some more formulas with the help of the law of cosine, which

are called half-angle formulas:

a) The Sine of Half the Angle in Terms of the Sides

In any triangle ABC, prove that :

. o /(s—b)(s—c)
(1) s1n2— e

Gy sl [6=I6-a)

2 ca
cen . Z . w
(iii) sin?-= \/—

ab

Proof: We know that

L a
2sm25 = l—cosa

where 2s=a+b+c

2 2

., b*+c* —a? b +c*—a
2sin"— = 1 —— ocosa =
2 2bc 2bc
3 2bc—b* -’ +d’

2bc

rsin? % - a> —(b* +c* —2bc) B a’—(b—a)’
2bc 2bc

it % — (a+b—-c)(a-b+c)

4bc
sin?% = =2(S - c):.2 (s=0) {fra b c 2s}

4bc

1s the measure of
jan angle of A4BC

ﬁ< 90 :>sing|r= ve
2 2

version: 1.1
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In a similar way, we can prove that

b) The Cosine of Half the Angle in Term of the Sides
In any triangle ABC, with usual notation, prove that:

1) cosZ = sts—a)
bc
11) cos— = s(s=b) > where 2s=a+b+c
2 ac
1i1) cosL = sts=¢)
ab )

Proof: We know that

a b +c*—-a’ b+t —a’
2cos°—= l+cpsa=l ——— |* cosq= ———
2 2bc 2bc
__2bc+b2+c2—a2 (b+c) —-a’
2bc 2bc
(b+c+a)(b+c—a)
2bc

o = (a+b+c)(b+c—a)

4bc
,a 2s.2(s—a)
4bc

cos”— = (.2s=a+b+c)

aismeasure of
anangleof ABC

a . a
. Elsacute = cOs=—= Ve

In a similar way, we can prove that

()
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c) The Tangent of Half the Angle in Terms of the Sides
In any triangle ABC, with usual notation, prove that:

i) tnZ= [BZD=0)
2 s(s—a)
(i1) tang = %(Sb_)a) where 2s=a+ b+ ¢
s(s—
(i) tanl= [EZDE=DH)
2 s(s—c)

Proof: We know that:

a _ [6=hG=0 o2 [st=a
bc 2 bc

. a J@—bxs—@
S1in —

=  tan— = % be
oS s(s—a)
2 bc

In a similar way, we can prove that:

12.7 Solution of Oblique Triangles

We know that a triangle can be constructed if:

i) one side and two angles are given,
or ii)  two sides and their included angle are given
or iii) three sides are given.
In the same way, we can solve an oblique triangle if

i) one side and two angles are known,

version: 1.1
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or ii)  two sides and their included angle are known
or iii) three sides are known.

Now we shall discover the methods of solving an oblique triangle in each of the above

cases:

12.7.1 Case I: When measures of one side and two angles are given

In this case, the law of sines can be applied.

Example 1: Solve the triangle ABC, given that
a = 3517, B=4513, b=421
Solution: - a+f+y = 180

y= 180" —(a + ) =180° —(35°17'+ 45°13") = 99° 30’
By Law of sines, we have

a b
sina sin
sina 421xsin35°17' 421(0.5776)
= a = b—= = —_— -

sin 8 sin45°13 0.7098

a = 342.58 = 343 approximately.

Again _ = _b
siny sin
. bsiny B 421xsin99 30’ ~421(0.9863)
sin sin45°13' 0.7098

= 584.99 = 585 approximately.
Hence y=99"30", a=343, ¢=585.

Exercise 12.4

Solve the triangle ABC, if
1. [=60" = , y 15
2. pB=52 =, y 89°35

., b 6

, a 89.35

version: 1.1
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3. b=H25 =, y 53 , a AT
4. c=¥6.E a 42745 y 74°32
5. a=53 = B 8836 , y 354

12.7.2 Case II: When measures of two sides and their included angle are given
In this case, we can use any one of the following methods:
i)  First law of cosine and then law of sines,

or i) Firstlaw of tangents and then law of sines.

Example 1: Solve the triangle ABC, by using the cosine and sine laws, giventhatb=3,c=5
and a = 120°.

Solution: By cosine laws,

a> = b +c°—2bccosa = 9+25-2(3)(5) cos 120°
- 9+25—2(3)(5)(—%): 9+25+15 = 49
a =7
Now —4 = _°
sina sin
- sinf = b sina _ 3xsin120 _ 3><0.866:O'3712
a 7 7
B = 2047
y = 180 —(a+pB)= 180°—(120° +21°47)
y = 8813

Hence a=7,=21"47"and y=38"13'

Example 2: Solve the triangle ABC, in which:
a =3621, c=30.14, g = 7810

version: 1.1
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Solution: Here a > ¢ Loa >y
a+pf+y = 180°

a+y = 180°—p = 180°—78°10

= a+y = 101" 50
- “;7 — 50°55'

By the law of tangents,

a—c¢ o+
tan Y

tan —7 q4—c o —
a_zl_ = —= tan Y
tan /4 a+c
2
a—y 36.21-30.14
SO tan = . tan
2 36.21+30.14
@27 = 997 o310
2 66.35
= tanZ—L - 0.1126
2
- tanl L - ¢26
2
a—-y = 12°52
Solving (i) and (ii) we have
a ==57"21 and y
To find side b, we use law of sines
.b = — = b
sin 8 sina
, _  3621xsin78°10
sin57°21'

Hence b =42.09, y=44°29" and

a+c 2

50°55'

(i)

44°29'

asin 3

sin o
(36.21)(0.9788)
(0.8420)

20.09

a= 5721

@)
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Example 3: Two forces of 20 Newtons and 15 Newtons, inclined at an angle of 45°,
are applied at a point on a body. If these forces are represented by two adjacent sides
of a parallelogram then, their resultant is represented by its diagonal. Find the resultan
force and also the angle which the resultant makes with the force of 20 Newtons.

Solution:
Let ABCD be a ll™, such that

‘ZE represent 20 Newtons

‘ZB represents 15 Newtons

and msZBAD = 45°
ABCD is a ||"
‘EE - ‘ZB‘ - I5N
m/ABC = 180° —msBAD = 180" —-45 = 135%°

By the law of cosine,

(j4c)) = ([4B|) +(BC) ~2[4B|x|8Cx cos 135

= (20)2+(15)2—2><20><15><_—1

V2
= 400 + 225 +424.2
= 1049.2

= 10492 = 324N

AC

By the law of sines,

BC AC

sinm/BAC  sin 135°

version: 1.1

i Wb =

Make 2]%, l;é, /Tb and IZ&
l;é xsin 135°
sinm/BAC = — X007 93074
AC{ 32.4
m/BAC = 19°6'

Exercise 12.5

Solve the triangle ABC in which:

b =95 c=34 and a =52°
b=12.5 c=23 and a =38 20
a=3-1 b=~3+1 and y =60

B =36"20
y =3813

a=3 c=6 and

a="7 b=3 and

Solve the following triangles, using first Law of tangents and then Law of sines:

6.
7.
8.
0.

10.
1.

12.

a==3621 = b 42.09 and y 44°29

a =93 = b 101 and S 80

a==48 = c 16.1 and a 42°45
a==319 =b 168 and y 110°22
a==61 = a 32 and a 59°30

Measures of two sides of a triangle are in the ratio 3 : 2 and they include an angle of
measure 57°. Find the remaining two angles.

Two forces of 40 N and 30 N are represented by AB and BC which are inclined at an

angle of 147° 25". Find AC , the resultant of AB and BC .

version: 1.1
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12.7.3 Case. lll: When Measures of Three Sides are Given

In this case, we can take help of the following formulas:
i) the law of cosine;
or ii)  the half angle formulas:

Example 1: Solve the triangle ABC, by using the law of cosine when
a=7,b=3,c=5
Solution: We know that

b*+c*—a’
cosag = —————
2bc
9+25-49 15 1
cosg = ——— == — il
30 30 2
a = 120
2 2 2
cos B = u :L"9:9 65 0.9286
2ca 70 70
g = 2UI'17
and y = 180" —(a+p) = 180"—(120"+21°47") = 3813

Example 2: Solve the triangle ABC, by half angle formula, when
a=283, b=317,c=428
Solution: 2s = a+b+c = 283+317+428 = 1028
s =514
s—a=514-283 = 231
s—-b=514-317 =197
s—c=514-428 = 96

Now, % = D=9 | L9786 3777
2 s(s—a) 514 %231

% = 2053 = a = 4124 and

version: 1.1
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@B - |[B=9—a) ,/M 0.4429
2 s(s—b) 514%x197
g = 2353 = = 47°46
y = 180" —(a+B) = 180°—(41° 24'+47 46")=90°50'
Exercise 12.6

Solve the following triangles, in which

1. a =7 b =7 ,C =9
2. a=32 ,b =40 ,C = 66
3. a =283 b =317 ,C =428
4. a =319 ,b = 56.31 ,C = 40.27
5. a = 4584 ,b = 5140 ,C = 3624
6. Find the smallest angle of the triangle ABC, when a = 37.34,
b =3.24, c = 35.06.
7. Find the measure of the greatest angle, if sides of the triangle are 16, 20, 33.
8. Thesides of atriangle are x* + x+1, 2x+1 and x* —1. Prove that the greatest angle of the

triangle is 120°.

9. The measures of side of a triangular plot are 413, 214 and 375 meters. Find the
measures of the comer angles of the plot.

10. Three villages A, B and C are connected by straight roads 6 km. 9 km and 13 km. What
angles these roads make with each other?

12.8 Area of Triangle

We have learnt the methods of solving different types of triangle. Now we shall find the
methods of finding the area of these triangles.

version: 1.1
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case 1 Area of Triangle in Terms of the Measures of Two Sides and Their Included Angle
With usual notations, prove that:

Proof: Consider three different kinds of triangle ABC with m/C =y as
i) acute i) obtuse and iii) right

From A, draw 4D 1 BC or BC produced.

A
1]
B oL ap)
Fig: (iii)
. . AD
In figure. (i), — = sin
g (i) —c /4
. .. AD
In figure. (i), — = sin(180°—y) = sin
g (i1) —C ( 7) /4
) ... AD
In figure. (iii), — = 1 = 5sin90° = sin
g (i) e /4
In all the three cases, we have
AD = ACsiny b sin y

Let A denote the area of triangle ABC.
By elementary geometry we know that

A = l(base)(altitude)
2
A = %B_C.E

1
A = — ab sin
7 v

version: 1.1

Similarly, we can prove that:

Case ll. Area of Triangle in Terms of the Measures of One Side and two Angles
In a triangle AABC, with usual notations, prove that:

2 . . 2 . . 2 . .
, a” sin [ sin b” siny sin o ¢” sing sin
Area of triangle = == _'B /4 ,7 _ P
2sin @ 2sin 2sin y

Proof: By the law of sines, we know that:

a b c

sin sin siny

sin
: and b c— p
siny siny

We know that area of triangle ABC is

sina
C =

= a =

1
A = —absin
5 /4
= A = l(CS{naJ(c?nﬂj sin ¥
2\ siny sin y

.
° o

In a similar way, we can prove that:

Case IIl. Area of Triangle in Terms of the Measures of its Sides
In a triangle ABC, with usual notation, prove that:

Area of triangle = /s(s—a)(s—b)(s—c
Proof: We know that area of triangle ABC is

A = lbcsinoz
2

version: 1.1
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1

= — bc. 2 sing COS:g sin 2 sing cosg
2 2 2 2

2
= bc \/(S_b)(s_c) s(s—a) (by half angle formulas)
bc bc
b Js(s—a)(s—b)(s—c)
bc

A = s(s—a)(s—b)(s—c)

Which is also called Hero's formula

Example 1: Find the area of the triangle ABC, in which
b=21.6, c=30.2 and a=52°40

Solution: We know that;:
AABC = % bc sin @ = %(21.6)(30.2) sin 52° 40’
= %(21.6)(30.2)(0.7951)

AABC = 259.3 sq.units

Example 2: Find the area of the triangle ABC, when
a ==35"17", vy 45°13' and b  42.1

Solution: - a+f+y= 180
o B = 180°—(a+y) = 180°—(35°17'+45°13") = 99°30'
Also b ==42Z1 « 3517, v 45713, p 99° 30/

We know that the area of triangle ABC is

b’ sin y sin a

s o Lps
2 sin [
1
2

(42.1)* sin 45°13' sin 35° 17’
sin 99° 30’

12. Application of Trigonometry

elLearn.Punjab
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1 (42.1)*(0.7097)(0.5776)
) (0.9863)

A = 368.3 square units.

Example 3: Find the area of the triangle ABC in which
a=2754, b=303.7, ¢=3425

Solution: ...  a=2754,b=303.7, c=342.5
. 2s =a+b+c
= 275.4 +303.7 +342.5=921.6
s= 460.8
Now s-a= 460.8-275.4=185.4
s—b= 460.8 -303.7=157.1
s—c= 460.8-342.5=118.3

Now A = s(s—a)(s—b)(s—c)
—460.8x185.4x157.1x118.3
A = 39847 sq. units

Exercise 12.7

1. Find the area of the triangle ABC, given two sides and their included

angle:

) a==2086 , b 120 , y 150°
i) b ==37=, c 45 , a 30750
i) b =433, b 9.25 , 4 56°44'

2. Find the area of the triangle ABC, given one side and two angles:

) b =254=, ¢ 36°41  , « 45°17'
i) ¢ =32 a 47°24 . B 70°16'
i) @ =82 =, o 8342 ., 37°12'

version: 1.1
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3. Find the area of the triangle ABC, given three sides:

) a=18 , b =24 , c=30
i) a=524 , b =276 , c=315
i) a=32.65 , b =42.81 , c=64.92

4. The area of triangle is 2437.I1f a =79, and ¢ = 97, then find angle 2.

5. The area of triangle is 121.34. If a = 32° 15 B =65° 37 then find c and angle y.

6. One side of a triangular garden is 30 m. If its two corner angles are 22° )5 and 112° )5, find
the cost of planting the grass at the rate of Rs. 5 per square meter.

12.9 Circles Connected with Triangle
In our previous classes, we have learnt the methods of drawing the following three kinds

of circles related to a triangle:

i) Circum-Circle i) In-Circle iii) Ex-Circle.

12.9.1 Circum-Circle:

The circle passing through the three vertices of a triangle is called a Circum- Circle. Its
centre is called the circum-centre, which is the point of intersection of the right bisectors of
the sides of the triangle. Its radius is called the circum-radius and is denoted by R.

a) Prove that: R = ,a = b = C
2sin o 2sin 2sin y

= 7

Fig. (i) Fig. (ii) Fig. {iii)
(£ BAC is acute) (£ BAC 15 obluse) (£BAC is right)

with usual notations.

version: 1.1

Proof: Consider three different kinds of triangle ABC with mzZ4 = «

i) acute i) obtuse iii) right.

Let O be the circum-centre of AABC. Join B to O and produce BO to -meet the circle
again at D.Join Cto D. Thus we have the measure of diameter mBD ==2R and mBC a
I. Infig. (i), m£ZBDC = mtA = «a (Anglesinthe same segment)

In right triangle BCD,

e B—C = sinmZBDC = sina
L Infig iy " 5P
msBDC+mzZ4 = 180° (Sum of opposite angles of a
= msZBDC+a = 18¢ cyclic quadrilateral 180"
= mZBDC = 180" -«

In right triangle BCD,

m—ic = sin m£BDC = sin(180° —«a) = sin «
m BD
L. In fig. (iii), m/Z4A = a = 90
miC = 1 sin 90’ sin &
m BD

In all the three figures, we have proved that

m BC .
— = siha«a
m BD
= 4 = sina = 2Rsina = a
2R
R = a
2 sin o

version: 1.1
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Similarly, we can prove that

R == b and R R,'C
2sinf 2sin y
Hence R = == fl b C
2sinax 2sin S 2sin y

a) Deduction of Law of Sines:

We know that R = @ _ b ¢

2sina 2sin B 2sin y

N .a _ .b .c R
sin & sin f§ sin ¥
a _ b =, which is the law of sines.
sin & sin f sin y
abc
b) Provethat: R = —
4A
Proof: We know that: R = -
2sin &
= R = 4 o sin @ 2 sin cos L
o 2 2

2.2sin— cosg
2 2

a

4 \/S(S_b)(s_c) \/S(S_a) (by half angle formulas)
bc bc

abc

4 s(s—a)(s—b)(s—c)

_ %C N= <SG s D o)

(@)

version: 1.1
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12.9.2 In-Circle

The circle drawn inside a triangle touching its three sides is called its inscribed
circle or in-circle. Its centre is known as the in-centre, it is the point of intersection of the
bisectors of angles of the triangle. Its radius is called in-radius and is denoted by r.

a) Provethat: r = éWith usual notations.
S

Proof: Let the internal bisectors of angles of triangle ABC meet at O, the in-centre
Draw OD 1 BC , OE 1 AC and OF 1 AB

Let,mO_D = mOE = mOF = r
From the figure Area AABC = AreaAOBC + AreaAOCA + AreaAOAB

A = LBCxOD+LiCAxOE+L ABxOF
2 2 2
1 1 1
= —ar+—br+—cr
2 2 2
1
= —r(a+b+c
5 ( )
A = lr.2s ( 25= a+13+c)

[\

version: 1.1
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12.9.3 Escribed Circles = (s—a) rn
A circle, which touches one side of the triangle externally and the other two produced
sides, is called an escribed circle or ex-circle or e-circle. Obviously, there could be only Hence -
three such circles of a triangle, one opposite to each angle of the triangle.
The centres of these circles, which are called ex-centres are the points where the In a similar way, we can prove that:

internal bisector of one and the external bisectors of the other two angles of the triangle

In A4BC , centre of the ex-circle opposite to the vertex A is usually taken as [, and its -

raidus is denoted by r.. Similarly, centres of ex-circles opposite to the vertices B and C are Example 1: Show that:
taken as [, and [, and their radii are denoted by r, and r, respectively.

ro = (s a) taﬁ% (s =b) tang (s ©) tang
a) With usual notation, prove that:
noo== A =7 A , and r, A Solution: To prove r = (s—a) tan <
s—a s—b s—c 2
Proof: Let [ be the centre of the escribed circle opposite to the vertex A of AABC, We know that:  tan% = \/(S —b)(s—¢)
From I draw 1,D L BC, LE L AC s(s—a)
produced and I,F L 4B produced. RHS= (s—a)tand = (s a) \/(S—b)(S—C)
Join I, to A, Band C. 2 s(s=a)
_ _ _ _ |=a)(s=b)(s—¢)
Let mi D = mlE = mlF = B s
From the figure  [SG-a)G-b)s-0) A
AABC = AILAB+AI AC-AIBC = e - =5 7
{ { { (s—a)tan% =r
= A = —ABxIF+—AC x1E——BCxID
2 2 2 In a similar way, we can prove that:
| 1 1
= —cn+—=bn —-—ar i y
2 2 r = (s b) tanE and—r (s © tanE
A = % r(c+b—a)
1 Example 2: Show that = 4R sinZ cosﬁ cosL,
= 5 v 2(s—a) (2s =a+b+c) 2 2 2
version: 1.1 version: 1.1
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Solution: R.H.S. = 4R sin& cosg cosg.

2
_, abe \/(S—b)(s—c) s(s —b) \/S(S—c)
4A bc ca ab
s(s—=b)(s—c)
A
s(s—a)(s—b)(s—c)
A. (s—a)
A2
A(s —a)

S—a

4

. a
Hence = 4R sm; cos? COS—.

1 1 1 1 2,72, .2
Example 3 : Prove that — +— +— +— _w
r h r r A

Solution: L.H.S. = L+—2+—+_

AT A A2 A
sS+(s—a) +(s=b)Y +(s—c)’
4s* —2s(a+b+c)+a’+b° +¢’
4s* —2s.2s+a’ +b* + ¢
a’+b*+c’

AT

= R.H.S.

Hence the result.

version: 1.1
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Example 4: If the measures of the sides of a triangle ABCare 17,10, 21. Find R, r, 1, I

,andr,.

Solution: Let a = 17, b 10, c = 21

. 2s =a+b+c = 17+10+21 = 48
= S = 24
s—a = 24-17=7, s—b=24-10=14 and s-c=24-21=3

Now A = s(s—a)(s—b)(s—c)

= A = 3424(7)(14)(3) 84

NoOW R a_bc _ 17.10. 21 &
4A 4 .84 8

vV = é = :8—4 Z:, 1 :A :ﬁ 12,

s 24 2 s—a 7
s—b 14 —-C 3

1210 Engineering and Circles Connected With Triangles

We know that frames of all rectilinear shapes with the exception of triangular ones,

change their shapes when pressed from two corners. But a triangular frame does not change
its shape, when it is pressed from any two vertices. It means that a triangle is the only rigid
rectilinear figure. It is on this account that the engineers make frequent use of triangles for
the strength of material in all sorts of construction work.
Besides triangular frames etc., circular rings can stand greater pressure when pressed from
any two points on them. That is why the wells are always made cylindrical whose circular
surfaces can stand the pressure of water from all around their bottoms. Moreover, the
arches below the bridges are constructed in the shape of arcs of circles so that they can bear
the burden of the traffic passing over the bridge.

a) We know that triangular frames change their rectilinear
nature when they are pressed from the sides. From the
strength of material point of view, the engineers have to
fix circular rings touching the sides of the triangular frames.

version: 1.1
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For making these rings, they have to find the in-radii of the
triangles.

b) Inorder to protect the triangular discs from any kind of damage,
the engineers fit circular rings enclosing the discs. For making
rings of proper size, the engineers are bound to calculate the
circum-radii of the triangles.

¢) Incertain triangular frames, the engineers have to extend two
sides of the frames. In order to strengthen these loose wings,
the engineer feels the necessity of fixing circular rings
touching the extended sides andthe third side of the frames.

For making appropriate rings, the engineers have to find ex-radii of the triangles.

The above discussion shows that the methods of calculations of the radii of incircle,
circum-circle and ex-circles of traingles must be known to an engineer for performing his
professional duty efficiently.

Exercise 12.8

1. Show that: » = 4Rsin<& siné sin?
2 2 2

i) s = 4R cosZ cosﬁ cos”
2 2 2
2. Showthat; r ==a sinﬁ sin? sec% b sinlsingsecﬁ

By

. a .
= ¢ sin— sin— sec*-
2 2 2

version: 1.1
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4,

Show that: i) r,
i)

i) n
Show that:

) ro= s tan
: 2

Prove that:

) nntnntnn =

)  rn+r+n-—r
FindR, r,r r

) a= 13, b
i) a= 34, b

1 4

= 4R sinﬁ COS— COS—
2 2 2

4

a .
= 4R COSE SIn— COS—

B .7

a
= 4R COSE COS— SIn

i) r = stan— Qi) 7n = s tan=
s? iy mrn = A
= 4R V) nnn = s
, I, and r,, if measures of the sides of triangle ABC are
= 14, ¢ = 15
= 20, ¢ = 42

Prove that in an equilateral triangle,

i) r:R:n = 1:

2:3

i)  r:R:p:r,:np =1:2:3:3 :3
Prove that:
i) A= rcotE cotﬁ cotL
2 2 2
i) r = s§tan— tangtanZ

By

i) A = 4R cosZ cosZ cosL
2 2

Show that: i) !

1 1 1

ﬁ: ab bc ca

version: 1.1
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10. Prove that:

a sin'Bsiny bsing.siny
A 2
cosg cosﬁ
2 2

11. Prove that: abc (sina +sin B +siny)

12. Provethat: i) (n+n) tan% = c
i) (n—r) cotg =c

B

.o .
sin— .sin
2

cosZ
2

4As

version: 1.1
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13.1 Introduction
restrict the domain of y = sinx to the interval [%%} , then the restricted function y = sinx,

We have been finding the values of trigonometric functions for given measures
of the angles. But in the application of trigonometry, the problem has also been the other
way round and we are required to find the measure of the angle when the value of its
trigonometric function is given. For this purpose, we need to have the knowledge of inverse
trigonometric functions.

In chapter 2, we have discussed inverse functions. We learned that only a one-to-
one function will have an inverse. If a function is not one-to-one, it may be possible to restrict
its domain to make it one-to-one so that its inverse can be found.

In this section we shall define the inverse trigonometric functions.

—%st% is called the principal sine function; which is now one-to-one and hence will

have an inverse as shown in figure 2.
This inverse function is called the inverse sin function and is written as sin"x or arc
sinx.
The Inverse sine Function is defined by:
y =sin'x,ifand only if x =sinYy.

where —%Syﬁ%and ~1<x<1

13.2 The Inverse sine Function: Here y is the angle whose sine is x. The domain of the function
The graph of y = sinx, -oo< x < +00, is shown in the figure 1.
y=sin'xis-1<x <1, itsrange is —%Syﬁ%
The graph of y = sin"'x is obtained by reflecting the restricted portion of the graph of
'_/_' R y = sinx about the line y = x as shown in figure 3.
L T e We notice that the graph of y = sinx is along the x - axis whereas the graph of y = sinx

T '_s_' Ao x - = o =
s, :/ : T : is along the y - axis.
e =f = i e gin Y

Example 1: Find the value of (i) sin_lg (i) sin_l(—%)
o . B
Solution: (i) We want to find the angle y, whose sine is -
= Siny=—3, < < z y z
We observe that every horizontal line between the lines y = 1 and y= -1 intersects the 2 2 2
graph infinitly many times. It follows that the sine function is not one-to-one.However, if we = ==
3
version: 1.1 version: 1.1
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sin_l(g) :%

(i)  We want to find the angle y whose sine is L

) 1 T T
= smy=-——, ——<y<—
YT 2775
-
"= %
1 T
- -1
sin” (——)=——
( 2) 6

13.3 The Inverse Cosine Function:

The graph of y = cosx, —co< x < +o0, is shown in the figure 4.

y=Cosx
Domain:[0, ]
R Range:[-1, 1]

|
el " X
0 n L
= 2 .
(a) Fig:4
¥
4.
x=Cosy
y /
F - n-
line .-
-1,
( ) - y=x K y= Cos 'x
. < T Domain:[-1, 1]
y=Cos"x a2 Range: [0, n]
]
-1 O| g
Fig:5

version: 1.1

We observe that every horizontal line between the linesy =1 and y =-1 intersects the
graph infinitly many times. It follows that the cosine function is not one-to-one. However, if
we restrict the domain of y = cosx to the interval [0, wt], then the restricted function y = cosx,
0 <x<m is called the principal cosine function; which is now one-to-one and hence will
have an inverse as shown in figure 5.

This inverse function is called the inverse cosine function and is written as cos™x or arc
COSX.

The Inverse Cosine Function is defined by:

y = cos™x, if and only if x= cos y.
where 0 <y<m and -1=<x=<1.

Here y is the angle whose cosine is x . The domain of the functiony = cosx is —1<x <1
and its range is 0<y<m.

The graph of y = cos™x is obtained by reflecting the restricted portion of the graph of
y = cos x about the line y = x as shown in figure 6.

We notice that the graph of y = cos x is along the x - axis whereas the graph of y = cos'x
is along the y - axis .

Example 2: Find thevalueof (i)  cos™l (if) cos_l(—%)

Solution: (i) We want to find the angle y whose cosine is 1

= cosy=l, 0<y<rm
= y=0
cos'1=0

(i)  We want to find the angle y whose cosine is —%

= cosy:—%, 0<y<nr

version: 1.1

O,

elLearn.Punjab



13. Inverse Trignometric Functions

elLearn.Punjab

2
73
1 1 2
cos (——)=—"2
( 2) 3

13.4 Inverse Tangent Function:

y=lanx xe(-o, + 2}
FE[—m, + =)

u /,, ye(=@, + =)
N, .

v
H
Ly = {af &
H

y=tanx, re{-n2, o2}

L&)
LA ]

Fig:?

puaTan™ r ve(=-x2 )
re(-m=, + ;)

The graph of y = tanx, -co< x < +00, is shown in the figure 7.
We observe that every horizontal line between the linesy = 1 and y = -1 intersect the graph

infinitly many times. It follows that the tangent function is not one-to-one.

However, if we restrict the domain of y = Tanx to the interval % <x< % then the restricted

13. Inverse Trignometric Functions
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. —7T T
functiony =tanx —<x<=

is called the Principal tangent function; which is now one-to-

b

: 2. e
one and hence Wllizhave an inverse as shown in figure 8.

This inverse function is called the inverse tangent function and is written as tan”'x or

arc tanx.

+oo and its range is —%<y<£

The Inverse Tangent Function is defined by:
y =tan'x, ifand only if x = tany.

T T
where _E<y<5 and —oo < x <+,

Here y is the angle whose tangent is x. The domain of the functiony =tan'xis -co<x <

2

The graph of y = tan”x is obtained by reflecting the restricted portion of the graph of

y = tanx about the line y = x as shown in figure 9.

We notice that the graph of y = tanx is along the x - axis whereas the graph of y = tanx

is along the y- axis.

Example 3: Find thevalueof (i)  tan™'l (i)  tan'(—/3)

Solution: (i) We want to find the angle y, whose tangent is 1

(i)

= tany=]I, —£<y<Z
2 2
= y-Z
4
tan"'1=2
4

We want to find the angle y whose tangent is —\/5

= tany:—\/§ % b

DAY

©

version: 1.1
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=3

tan"'(—/3) = 277[
13.5 Inverse Cotangent, Secant and Cosecant Functions

These inverse functions are not used frequently and most of the calculators do not
even have keys for evaluating them. However, we list their definitions as below:
i) Inverse Cotangent function:

y = cotx, where 0 <x<m is called the Principal Cotangent Function, which is one-to-
one and has an inverse.

The inverse cotangent function is defined by:

y = cot'x, if and only if x = coty

Where 0<y<7z and -oo<x<+o0

The students should draw the graph of y = cot™' x by taking the reflection of y = cotx in
the liney = x. This is left as an exercise for them.
ii) Inverse Secant function

y = sec x, where 0<x<7z and x;t% is called the Principal Secant Function, which is

one-to-one and has an inverse.
The Inverse Secant Function is defined by:
y = sec'x. if and only if x = secy

where 0< y <, y;t% and |x|>1

The students should draw the graph of y = sec’x by taking the reflection of y = secx in
the liney = x. This is left an exercise for them,

iii) Inverse Cosecant Function

y = ¢sc x, Wwhere —%Syﬁ% and x#0 is called the Principal Cosecant Function,

version: 1.1

which is one-to-one and has an inverse.
The Inverse Cosecant Function is defined by:

y=csc ' x, ifand only if x=cscy

where —%Syﬁ%,y;thnd |x|>1

The students should draw the graph of y=csc™' by taking the reflection of y = cscxin
the liney = x. This is left an exercise for them.

13.6 Domains and Ranges of Principal Trigonometric Function
and Inverse Trigonometric Functions.

From the discussion on the previous pages we get the following table showing domains
and ranges of the Principal Trigonometric and Inverse Trigonometric Functions.

Functions Domain Range
y=sinx Py -1<x<1
2 2
y:Sin—lx -1<x<1 1SXS£

2 2
Y =C0SX 0<x<r -1<x<1
y=cos” x —-1<x<1 0<x<rm
y=tanx Y 1 (~00,00) or R

version: 1.1
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y=tan71x (—O0,00) or R __<x<£
2 2

y=cotx O<x<rm (—o0,0) or R

y:cot_lx (—O0,00) or ‘R O<x<nm

y=secx [O,ﬁ],x;tﬁ y<-1 or y2>1

2
y=sec x x>-1or x<1 [0’”]’y¢%
y =C8Cx [_1 z]x;tO y<-1 or y21
2727
y=cscx x<-1orx>1 [_g’%]’ y#0

Example 4: Show that cos‘12 sin” —

Solution: Let cos_l% —

2
sing = ++l-cos’a = i‘/l—(%j
_ o4 144
169
_ [l 25
169 169

cos o is +ve and domain of a is [0, =], in which sine is +ve.

5

13

version: 1.1
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Thus sinag= —=

412 . 5
Hence cos'— =sin™"

13 13
Example 5: Find the value of

i) sin (cos™ 73) i) cos (tan~' 0) i)
. e B3
i) we first find the value of y, whose cosine is -
3
cosy=—, 0<y<n
I
7%
= (cos™ ﬁ) -
6
sin(cos™' %3) _sinZ L
2 6 2

i) we first find the value of y, whose tangent is O

T V2
tany =0, —3<y<—

2

= y=0
= (tan'0) =0

cos(tan”' @ =cos0 1

iii)  we first find the value of y, whose sine is —%

) 1 T b4
smy=-——, ——<y<—
T 2 -V
L T
T %
.o, 1 T
= sin (——)=——
(—2) 7

sec [sin_](—%)] Solution:

version: 1.1
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sec[sin™ (—l)] Zi Vii) cot (1) viii) cosec™ [_—j iX) sin_l[—L]
27 3 V3 V2
Example: 6 Prove that the inverse trigonometric functions satisfy the following identities: 2. Without using table/ Calculator show that:
) sin”' x X cos ' x and cos-' x z sin”' x . 45 . 15 . L 4 . 1 24
2 2 ) tanT — = sin — i) 2cos — = sin —
. . | 13 5 25
i) tan'x== cot'x and cot'x = tan'x 4 4
2 2 iii) cos'— = cot'—
vee 72- 1 1 7[ 1 5
i) sec'x== cselx and cse-x — sec x
2 2 3.  Find the value of each expression:
Proof:
Consider the right triangle given in the figure Angles a. and B are acute and complementary. , . 1 N 1 L3
) cos| sin. — i) sec| cos” — i)  tan| cos” —
- J2 2 2
= o+ ﬂ =— 1
2 B iv) csc(tan‘l(—l)) V)  sec sin_l(—E)J Vi) tan(tan‘l(—l))
= a:%—ﬂ and ﬂ:%—a (1) 1 1
Vii) sin(sin_l(—)j viii)  tan sin_l(——)j iX) sin(tan‘1 (—1))
Now sina = sin(% —fB)=cosff=x (say) 2 2
a
& a=sin"x and f=cos’x 13.7 Addition and Subtraction Formulas
Thus from (i) we have:
. . 1)  Prove that:
sin'x== cos ' x and cos= x = sin'x
2 sin'A+sin'B = sin'(4AN1-B’ + B\1-4%)
In a similar way, we can derive the identities (ii) and (iii). Proof- let sin'A= x =>sinx = A4
£ e 131 and sin'B= y =siny = B
Xercise 1o.
Now COS X = +4l-sin’x = +1-4°
1.  Evaluate without using tables / calculator: T
In sinx = A, domain = [—5,5} , in which
3 Cosine is +ve,
i) sin”'(1) i) sin”' (~1) i)  cos™| —
2 s cosx = 1 A
iv) tan‘l(—ij V)  cos’ (lj vi) tan™ (Lj Similarly, cosy = +1-B
V3 2 V3 Now sin(x+y) = sinxcosy+cosxsiny
version: 1.1 version: 1.1
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= AN1-B* + B\1- 4
= x+y = sin(4AV1-B* - B1- 4%
sin”' A+sin"' B=sin"'(4AV1— B’ + B\1-4%)

In a similar way, we can prove that
2) |sin"' A—sin”' B=sin"'(4AV1—- B> — B\1- 4%)

3) |cos ' A+cos” B=cos ' (4B — \/(1 ~A*)(1-B%))

4) |cos™ A—cos™ B=cos (4B +4/(1- 4*)(1-B?))

5) Prove that:

tan ' A+tan' B = tan’ A+8
1-AB
Proof: Let tan'4= x =tanx = A4

and tan'B= y =tany = B

tanx+tany A+B
l-tanxtany 1-A4B

Now tan(x+y) =

4 A+B
1- AB

= x+y = tan

4 A+B
1- AB

tan' 4+ tan B = tan

In a similar way, we can prove that

6) tan”' 4—tan"' B=tan™"' A-B
1+ AB
Cor. PuttingA-B in
tan"' A+tan"'B = tan" 5 , we get
1-A4B

13. Inverse Trignometric Functions

elLearn.Punjab

tan ' A+tan' 4 = tan”' A+ /21
—A
— 2tan"' A =tan"" 24 .
—A

Exercise 13.2

Prove the following:

. 15 .1 253 1 D S

1. SiIn —+SIn  —=Cc0S —— 2. tan —+tan —=tan —

13 25 325 4 5 19
3. 2tan”’ % =sin”’ 2 [Hint :Let tan™' 2 ==.and shown sin2x 2 }

3 13 3 13
4. tan™' 120 _ 2¢cos™ 12 5. sin’' 1 +eot13=2
13 J5 4

6. sin™' 3 +sin”! 8 _ sin”! 77 7. sin™ 77 sin”' 3. cos™ 15

5 17 85 85 5
8. cos’ 63 +2tan” 1_ sin™! 3

65 5
9. tan ™! 2 +tan” E —tan' —= z

4 5 19 4

[Hint : First add tan™ % +tan”' %and then proceed}

216 _7

10. sin™' i +sin” i +sin =
5 13 65 2

17

version: 1.1
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1. tan'ttan'>=tan' Lo tan '
11 6

12. 2tan’' l +tan™' z
3 4

1
7
13. Showthat cos(sin”'x) =+1-x"

14. Showthat sin(2cos'x) =2xv1-x’
15. Showthat cos(2sin”'x) =1-2x"

16. Showthat tan'(—x)- = tan'x
17. Showthat sin™'(-x) = sin"'x
18. Showthat cos'(-x) —-=7 cos'x
19. Showthat tan(sin™' x) S =
1-x

20. Given that x:sin‘%, find the values of following trigonometric functions: sinx, cosx,

tanx, cotx, secx and cscx.

version: 1.1
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- Example 2: Solve the equation: 1+cosx=0
14.1 Introduction P I *
Solution: 1 + cosx =0

= cosx = -1

Since cos x is —ve, there is only one solution x=m in [0, 27]

The Equations, containing at least one trigonometric function, are called Trigonometric
Equations, e.g., each of the following is a trigonometric equation:

, 2 . 3 Since 27 is the period of cos x
sinx=—, Secx=tanx and sin"x secx 1 — . 7
5 4 .. General value of x is  + 2nm, ne
Hence solution set = {® + 2nn}, neZ

Trigonometric equations have an infinite number of solutions due to the periodicity of the
rigonometric functions. For exampl :
trigonometric functions. For example Example 3: Solve the equation: 4 cos’x-3=0

If sin@=6 then0=0,= ,+2 ,.. Solution: 4 cos2x—3=0

which can be written as 0 =& , wheren Z. 3 J3

= coszx:Z = + cosx= -
In solving trigonometric equations, first find the solution over the interval whose A
length is equal to its period and then find the general solution as explained in the following i If cosx=—~

examples: _ . _ -
Since cos x is +ve in T and IV Quadrants with the reference angle

: 1
Example 1: Solve the equation sinx = 5

Solution:  sinx=— wox=——and=m=2 - L where x€[0,2 ]
' 2 6 6 6

As 2m is the period of cos x.

sin x is positive in I and II Quadrants with the reference angle x=—. 11
6 General value of x are g+2n and ?+2n , neZz

S

g x=2 and x= ——= ' where x€[0,2 ]

6
ii. if cosx=—"-
2

". General values of x are —+ 2n and 5—+ 2n , ne”Z
; 6 6 ’ Since cos x is —ve in IT and III Quadrants with reference angle x =<

, 5
Hence solution set :{g+2n }u{?+2n } ne’Z f = S and x=x+g=% where xe[O,Z ]

As 27 is the period of cos x.

version: 1.1 version: 1.1
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". General values of x are %Jr 2n and %Jr 2n , ne”Z

Hence solution set ={g+2n }u{%+2n }u{%+2n }u{%+2n }

14.2 Solution of General Trigonometric Equations

When a trigonometric equation contains more than one trigonometric functions,
trigonometric identities and algebraic formulae are used to transform such trigonometric
equation to an equivalent equation that contains only one trigonometric function.

The method is illustrated in the following solved examples:

Example 1: Solve: sin x+ cos x= 0.

Solution: sinx+cosx=0

sinx CcoSx C o
+ =0 (Dividing by cos x # 0)
COSX COSX
= tanx+1 =0 = tanx = 1

tan x is —ve in Il and IV Quadrants with the reference angle

X= ——=—, where xe[O, ]

As 1 is the period of tan x,

.3
General value of x is Z+n , ne Z

Solution set = {%+n } nhe Z

Example 2: Find the solution set of:  sinxcosx =T3.
. : 3

Solution:  sinx cosx:T.

3

= l(ZSinx cosx)=—
2 4

= sin2x:—3
2
sin 2x is +ve in I and II Quadrants with the reference angle 2x=5

2x=7 and 2x = —5:2? are two solutions in [0,2 ]
As 2m is the period of sin 2x.

General values of 2x are g+2n and 2?+2n ,, he/Z

= General values of x are g+n and 5+n , he Z

Hence solution set = ={g+n }U{§+n } , he ”Z

Example 3: Solve the equation: sin 2x = cos 2x

Solution: Sin2x = C0s2x
= 2Sinx COS x = COSx
= 2sinxcosx—cosx=0
= cosx(2sinx—1)=0

version: 1.1
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cosx=0 or 2sinx—-1=0 As 2m is the period of cos x
i If cosx=0 7 3z
. General values of x are 7 +2nm and = +2nmt , neZ
- x=— and x=3— wherex e [0,27]
2 2 ii. If cos x=1
As 2T is the period of cos x . =x=0andx=2t where x e [0, 2n]
; As 27 is the period of cos x
General values of xare ~ + 2nm and 77[ +2nm, neZ, . General values of x are 0 + 2nm and 2r + 2nm, neZ.
ii. If2sinx-1=0
. 1 ~.Solution Set =4 Z 4 2nzt L 3—7T+2n7r U{Znﬂ}u{2ﬁ+2n7z},nez
= SIn x = E 2 2
Since sin x is +ve in I and I Quadrants with the reference angle x=% {2+ Dt c{2nn}, nez

T T Sr
=% and TETTET 6 where x [0, 27] Hence the solution set = [%+2nﬂ'}u{37ﬂ+2nﬂ'}u{2nﬂ'},n ez

As 2 is the period of sin x. Sometimes it is necessary to square both sides of a trigonometric equation. In such
a case, extaneous roots can occur which are to be discarded. So each value of x must be
checked by substituting it in the given equation.

_ T 37 x . For example, x = 2 is an equation having a root 2. On squaring we get x* — 4 which gives
Hence solution set = [E+2m}u{7+2nn}u{g+2nn}u{5€+2n7r}, two roots 2 and -2. But the root -2 does not satisfy the equation x = 2. Therefore, -2 is an
extaneous root.

General values of x are and % + 2nm and 5% +2nm, neZ,

nez
Example 4: Solve the equation: sin?x + cos x = 1. Example 5: Solve the equation: cscx=+/3 +cotx.
Solution: sinx+cosx =1 Solution: cscx=+3+cotx ... (1)
2 —
= 1-cos*x+cosx =1 . 1 _\/§+cosx
= —cosx(cosx—1)=0 sin x sin x
= cosx =0 or cosx-1=0 .
— 1=x/§smx+cosx
i.Ifcos x=0 — l1—cosx=+/3sinx
—x=2% and x=Z% , where x € [0, 27] 5 .
2 2 = (1-cosx) =(\/§s1nx)

version: 1.1 version: 1.1
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= 1-2cosx+cos’ x=3sin’ x

= 1-2cosx+cos’x=3(1-cos’x)
= 4cos’x—2cosx—2=0

= 2cos’x—cosx—1=0

= (2cosx+1)(cosx—1)=0

1

= CcOSX = 5 or =osx 1
) 1
1. If cosx=——
2

Since cos x is —v e in II and III Quadrants with the reference angle x :g

= x:ﬂ—%:% and x:ﬂ+§:47ﬂ , where x e [0, 2]

Now x:% does not satisfy the given equation (i).

x:% is not admissible and so x:ZT” is the only solution.

Since 2m is the period of cos x

General value of x is 2—7[+2n7z , heZ
ii. If cosx =1 3
= x=0 and x= 2w where x e [0, 27]
Now both csc x and cot x are not defined forx=0 and x=2
x=0 and x= 2 are not admissible.

Hence solution set = {277[+2n7r} , heZ

14. Solutions of Trigonometric Equations
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Exercise 14

version: 1.1

1.  Find the solutions of the following equations which lie in [0, 2x]
i) sinx = —ﬁ i) coseco =2 i) secx=-2 Iv)  cotd :L
2 NE
2.  Solve the following trigonometric equations:
) tanzé?:l i) cosec26’=i iii) sec26’=i iv) co‘[29:l
3 3 3 3
Find the values of 6 satisfying the following equations:
3. 3tan’0+23tanf+1=0
4. tan’ @ —secd—1=0
5. 2sin@+cos’0—-1=0
6. 2sin’@-sind=0
7. 3c0s’ @ —2+/3sinOcos@ —3sin’ O =0 [Hint: Divide by sin?6]
Find the solution sets of the following equations:
8. 45sin?0-8cos0+1=0
0. J3tanx—secx—1=0
10. cos 2x=sin 3x [Hint: sin3x = 3sinx — 4sin3x]
11. sec 36=secH
12. tan20+cot6=0
13. sin2x+sinx=0
14. sin4x—sin 2x = cos 3x
15. sinx+ cos 3x = cos 5x
16. sin3x+sin2x+sinx=0
17. sin7x-sinx=sin3x
18. sinx+sin3x +sin5x =0
19. sin6+sin30+sin50+sin76=0
20. cosO+cos30+cos50+cos/76=0
version: 1.1
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